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Chapter 2
Scattering of Electromagnetic Waves
from a Spherical Boundary Using a

Thin Phase Screen Model and
Scalar Diffraction Theory

2.1 Introduction

This monograph focuses principally on the calculation of the
electromagnetic field vector observed by a low Earth orbiting (LEO) spacecraft
during an occultation of a Global Positioning System (GPS) satellite that is
broadcasting a navigation signal. Of specific interest is the change in the
observed signal amplitude and phase of the electric field that results from a
sharp change across a spherical surface of a refraction-related property of the
atmosphere. This would include a discontinuity in the atmospheric refractivity
itself, or in some other quantity, such as the gradient of the refractivity caused,
for example, by a change in scale height or the lapse rate of the temperature
profile. Discontinuities such as these, and also milder dislocations, can result in
multiple rays arriving concurrently at the LEO or, conversely, in shadow zones
where no rays (according to geometric optics) arrive. Diffraction also is a by-
product of these types of refractivity changes, but the amplitudes and
frequencies of the diffraction fringes very much depend on the sharpness of the
change and its type. Also, sometimes, caustics are present for certain LEO
orbital positions.

The calculation of the observed electromagnetic field for these situations
can be very difficult. Even with certain geometric assumptions in place, such as
spherical symmetry, GPS/LEO orbital coplanarity, and a planar wave front for
the incident wave, the exact wave-theoretic solution to this problem based on
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Maxwell’s equations is not readily tractable. Mie scattering theory is an
example of a wave-theoretic approach to this spherical problem. Chapter 3 uses
Mie scattering theory to study scattering from a spherical surface in an
otherwise homogeneous medium. Chapter 5 uses a modified version of Mie
scattering to deal with a scattering surface that is embedded in a refracting
medium. Both of these chapters involve a full-wave theory approach, which
results in spectral series representations of the electromagnetic field that are
solutions to the Helmholtz equation.

Here in Chapter 2, however, we use a combination of geometric optics and
scalar diffraction theory applied to a thin phase screen model to develop the
phase and amplitude profile that would be observed by a LEO as a result of a
change in a refractivity-related quantity. The thin screen becomes a proxy for
the actual atmosphere. A vertical profile for the atmosphere-induced phase
delay is embedded in the thin-screen model in such a way that the phase and
amplitude profile observed by the LEO over time matches (according to
geometric optics) the actual profile. This model in a ray-theoretic framework
greatly simplifies the calculations. But, when diffraction effects are included,
one must also deal with a convolution integral over the vertical profile in the
thin phase screen. In wave theory, the spectral series representations of the
electromagnetic field are essentially integrals over spectral number space. In the
thin-screen approach, the integral representation of scalar diffraction effects is
effectively over impact parameter space.

In Fig. 2-1 we see a ray with its point of tangency below the surface ro , that
is, r ro* < . This surface at r ro=  marks a boundary separating the “+” and the
“–” regimes. Across this surface a single discontinuity is assumed to occur (in
an otherwise benign medium) in one of the parameters that define the
relationship between the refractivity and the radial distance r . We will consider
the effects of small discontinuities at ro  in three parameters: No , the refractivity

at ro ; Hpo
, the pressure scale height; and γ = −T dT dr1 / , the normalized lapse

rate of the temperature profile. The profile of the observed bending angle of the
signal from an occulted GPS satellite will change as a result of a discontinuity
at ro  in any one of these quantities.

n+(r )

n 
– (r )

rro

r
*

Fig. 2-1.  Ray path in a stratified medium with a
spherical boundary separating two regimes.
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2.1.1 Multipath Scenarios

Figure 2-2 shows different multipath scenarios. Figure 2-2(a) is a schematic
ray diagram for a collimated beam of plane waves encountering from the left a
sphere of lower refractivity than that in the surrounding medium, a so-called
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Fig. 2-2.  Multipath scenarios caused by a refracting sphere according to geometric optics.
Rays arriving on the right at the same point have a common observation epoch denoted by

t0,t1,t2,…:  (a) N (r ) or its gradient is less inside than outside, (b) N (r ) is greater inside with
super-refractivity, and (c) the gradient of N (r ) is greater inside without super-refractivity.
The altitude of the observer is denoted by hLG, and the altitude of the impact parameter of
the ray is denoted by h.

hLG
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sub-refraction scenario. For a setting occultation, the observer may be thought
of here as traveling vertically downward on the right-hand side of the panels
along the points labeled t t t0 1 2, , ,⋅ ⋅ ⋅, which denote the epochs at which one
observes the rays arriving at those corresponding points. The altitude of the
observation point is denoted in the figure (relative, say, to the bottom of the
frame) by the variable hLG . There is a one-to-one and almost linear relation

between these points in time and the values of hLG , ˙ ˙ ˙ km/ sLG Lh D= = −θ 2 3 ,

where D is the LEO limb distance and ˙
Lθ  is its orbit angle rate relative to the

direction of the GPS satellite and projected into the plane of propagation. The
altitude of the corresponding observed ray before passing through the sphere
(shown on the left edge of the figure) is denoted by h, which is closely related
to the impact parameter of the ray minus the reference. For observations taken
before t1 , only a single ray is encountered, and the measured phase and
amplitude of the signal can unambiguously be assigned to this singlet. The
epoch t1  marks the first contact by the observer with a triplet ray system, the
rays of which have been labeled in Fig. 2-2 as “m” for the main ray, “a” for the
anomalous ray, and “b” for the branching ray. Rays observed at the same epoch
arrive at the same time point on the right. At the position of the observer at t1  in
Fig. 2-2(a), the newly created a and b rays are collinear, but thereafter the
points of tangency of the observed a and b rays, that is, their h or impact
parameter values, migrate in opposite directions: for the a ray upward and for
the b ray downward. Thus, at the epoch t1 , the altitude hLG  of the observer is
stationary with respect to the altitude h of the a,b ray system. This corresponds
to dh dhLG /  being zero at t1  for either the a or the b ray, and having opposite
polarities on these two rays for later times as they drift apart. This results in a
separation in observed bending angles and/or excess Doppler, which are both
offset from the bending angle and excess Doppler associated with the main ray
m, the third ray. Between epochs t1  and t3 , the observer must deal with a triplet
ray system for this case. Worse scenarios with quintuplets and higher numbers
can readily be constructed. As time is shown progressing in Fig. 2-2(a), the
observer finally reaches the point, at epoch t3 , where the m and a rays have
merged—their respective points of tangency, or h values, have met at the
boundary of the sphere; dh dhLG /  also is zero here. This marks the end of the
line for these two rays, and from this epoch onward (for example, at t4 ) one has
only the singlet b ray remaining; it now becomes m, the new main ray. We
show later that caustic rays occur where dh dhLG / = 0 , in this figure at t1  and at
t3 . The scalar diffraction version of this scenario in Fig. 2-2(a), which is
discussed later, is shown in Figs. 2-10(a) and 2-10(c) and in Figs. 2-11(c) and
2-11(d).

Figure 2-2(b) shows a schematic ray diagram for the converse scenario
where the refractivity is abruptly larger within the sphere than outside. This
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creates a super-refractivity zone. Here one observes a blackout (according to
geometric optics) for the time interval from t1  to t2 ; the observer moves into a
shadow zone at t1  and exits it at t2 . This is accompanied by a flaring at t2 ; at
this point dh dhLG / = 0 . Thereafter, the observer sees a doublet ray system.

This doublet is a result of the condition rn r r n r r r( ) ( ) ,* * *− ≥ ∀ ≥− 0  being
violated for tangency points nearing the boundary, a hard discontinuity in
refractivity in this example, which causes the main ray to terminate abruptly at
the boundary and no rays to arrive in the shadow zone. The scalar diffraction
version of this scenario is discussed in Section 2.7 (see Figs. 2-11(a) and
2-11(b).

Figure 2-2(c) relaxes the discontinuity in refractivity shown in Fig. 2-2(b).
It imposes a continuous refraction profile, but it invokes a large but finite
gradient in refractivity between the boundary and a short distance below it.
Below this level, the gradient resumes its reference profile. However, the
magnitude of the gradient in the transition region is constrained to ensure that
the ray existence condition rn r r n r r r( ) ( ) ,* * *− ≥ ∀ ≥− 0  holds for all values of
the tangency point r* near the boundary, thereby ensuring that rays exist for all
values of the impact parameter. The radius of curvature of the rays here is
greater than the spherical radius. This scenario results in a triplet ray system
(for t t t2 4≤ ≤ ), although in Fig. 2-2(c) the m ray becomes severely defocused
in this multipath region. Figures 2-10 (b) and 2-10(d) show a diffraction version
of this scenario. This scenario also is further discussed in Section 2.8 in
connection with an actual occultation taken by Global Positioning
System/Meteorology (GPS/MET) (see Figs. 2-15 and 2-16). Evidently, on this
particular occasion the tangency point of the ray(s) descended through a sharp
positive radial gradient in electron density at the bottom of a sporadic E-layer.

Multipath with caustics has been seen in radio occultation observations of
Uranus and Neptune [1,2]. When convective mixing of atmospheric gases plays
a minor role, layering is a plausible result. To a first approximation, the
multipath scenario shown in Fig. 2-2(c) probably occurred in the Uranus
occultation displayed in Fig. 1-11. It shows an open-loop power spectrum over
time, observed in 1986 from the Earth, of the Voyager 2 radio signal as the
spacecraft followed an occulting trajectory behind Uranus [1]. The power
spectrum over time is composed of contiguous power spectrum strips 10 s
wide. Over roughly 1 hour the signal from Voyager passed through Uranus’
atmosphere. During the 10- to 20-minute interval shown in Fig. 1-11, the signal
in its descent into the atmosphere encountered a layer composed of gases of
higher refractivity.

For an Earth limb sounder, one might expect to encounter this kind of
feature upon first contact of the tangency point of the ray with a marine layer in
the lower troposphere. However, for the Earth, the time interval for completion
of the transient would be measured in a few seconds rather than the several
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minutes shown in Fig. 1-11 for Uranus, but the Doppler spread between tones
would be comparable. We note that in Fig. 1-11, just prior to and just after the
epoch of first contact with the caustic, the signal power of the main ray is very
low. This suggests that it passed through a narrow transition region at the
boundary with a large gradient in refractivity and, consequently, is causing
severe defocusing.

A closed-loop tracking receiver is unlikely to deal adequately with the kind
of multipath scenarios shown here when its signal correlation and tracking-loop
feedback logic are predicated on encountering only singlet tones. Even the
phase and amplitude data from a receiver that tracks in the so-called “flywheel”
mode will complicate significantly the recovery process unless the trifurcation
and subsequent annihilation of these tones are properly accounted for or
effectively eliminated by preprocessing the data. In the flywheel mode, the
receiver uses its last several reliable phase measurements to extrapolate forward
in time to attempt to keep the radio frequency (RF) sample window centered in
Doppler space at the most likely location of the tone(s). If the receiver had been
using its last good estimate of the Doppler tone from the m ray for its
flywheeling forward, what does it do at the epoch t3 , which is the end of the
line? To continue onward along the evolution of the b ray with time, does one
account for the integer cycle difference that has accumulated between the m
and b rays during the interval from t1  to t3 ? Appendix F discusses the bias in
recovered refractivity that can result from missing cycles.

2.1.2 An Overview of Chapter 2

To apply a thin phase screen model for calculating signal amplitude and
phase observed by a LEO, we need a few concepts from geometric optics for
the actual atmosphere, which we assume here is spherical symmetric. This
includes the integral expression for refractive bending angle in terms of the
radial profile for the index of refraction, the Abel transform for recovering the
refractivity profile, and other related quantities. Geometric optics is used to
obtain the observed change in the refractive bending angle and phase delay as a
function of impact parameter due to any one of the discontinuity scenarios
described earlier. Then, we introduce two thin phase screen models and discuss
their use and their correspondence to the actual atmosphere. Multipath, caustics,
and shadow zones are discussed in the framework of a thin-screen model, first
in a geometric optics context and later in a wave-theory context. Next, to
account for diffraction effects in carrier phase and amplitude, we introduce into
the thin-screen model a particular scalar diffraction theory in the form of the
Rayleigh–Sommerfeld integral. To numerically evaluate this diffraction
integral, we introduce the stationary-phase concept and its role, not so much as
a stand-alone computation technique in terms of Fresnel integrals, but as an aid
for other computation techniques, and for assigning the appropriate phase



Scattering of Electromagnetic Waves 83

profile to the thin-screen model. Numerical results for Fresnel diffraction from
a discontinuous refractivity profile then are presented. Also presented are the
diffraction effects from a continuous refractivity profile but with a
discontinuous lapse rate.

We then use thin-screen/scalar diffraction techniques developed here to
treat certain caustic, multipath, and shadow effects that can be observed by the
LEO as the ray path tangency point crosses an ionosphere layer; for examples,
see Figs. 2-15 and 2-16 in Section 2.8. We discuss the errors in the retrieved
refractivity and temperature profile that can result from use of a straight Abel
transform recovery algorithm without accounting for the deficiency in ray
theory for this case. Finally, in later sections, we briefly discuss the potential of
the Fresnel transform technique for enhanced resolution in thin atmosphere
conditions and sketch how it might be used in multipath situations. Use of a
scalar diffraction technique to sharpen the resolution of localized features is
briefly covered.

2.2 Geometric Optics in a Spherical Medium

To use a thin-screen model to calculate these effects, we need some
concepts from geometric optics applicable to the actual atmosphere. We need to
express the refractive bending angle as a function of the index of refraction, and
we need a few other related concepts.

The refractive bending angle observed by a LEO during an occultation is
obtained directly from the Doppler observations made by the LEO and the
precision orbit determination (POD) information about the satellites.
Appendix A, see Figs. A-2 and A-3 and Eqs. (A-8) through (A-18), derives the
relationship between the excess Doppler and the atmosphere-induced refractive
bending angle α  of a ray from the occulting GPS satellite. The excess Doppler
is the observed Doppler minus the Doppler due to the relative motion between
the LEO and the observed GPS satellite. Both the case where the GPS satellite
is located at a finite distance from the Earth’s limb and the limiting case where
it is infinitely afar are given. The latter case1 yields a particularly simple near-
linear relationship between α  and the excess Doppler fD , which is given by

λ α αf VD = + [ ]⊥ O 2 (2.2-1)

                                                            
1 Placing the occulted GPS satellite at infinity is adequate for our purpose, but not for
treating actual data. For the finite case, the bending angle equals the sum of two
deflection angles, δ

G
 and δ

L
. δ

G
 is the deflection angle of the ray asymptote at the

GPS satellite (see Fig. A-3) relative to the straight line passing through the positions of
the GPS and LEO satellites; δ

L
 is the deflection angle at the LEO. In practice δ

L
 is

roughly an order of magnitude larger than δ
G
. These deflection angles are mutually

constrained by ray tracing or by Bouguer’s law when spherical symmetry applies.
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Here λ  is the wavelength of the carrier of the observed signal, and V⊥  is the
component of the cross-velocity of the straight-line path between the GPS and
LEO satellites lying in the propagation plane, the plane containing the GPS
satellite, the LEO, and the ray. In Figs. 2-2 and 2-3, V dh dt⊥ = − LG /  for a
setting occultation. When the LEO orbital altitude is about 10 percent of the
Earth’s radius, V⊥ ≅ ±2 5 20.  km/ s % . The 20 percent spread results from the

typical range of obliquity values between the propagation and orbit planes in
the set of occultations used for data analysis. V⊥  is essentially constant over the
relatively short duration of an occultation. For the Earth’s atmosphere at sea
level, α  is about 20 mrad for the dry air component; thus, the range of fD  is a
few hundred hertz for dry air. Water vapor in the lower troposphere can double
or triple this range.

Geometric optics as a ray theory can be developed from different
approaches. One approach is to start from a wave representation based on
Maxwell’s equations for a harmonic wave in a refracting medium, and then take
its limiting form as the wavelength of the wave is made to approach zero. The
general properties of rays, such as ray path curvature as a function of refractive
gradient, reflection coefficients, and so on, can be deduced. An account of this
approach is given in [3]. Another approach is to start from Fermat’s stationary-
phase principle for rays in general and apply the Calculus of Variations to the
path integral for the phase delay along the ray. Each of the rays in Fig. 2-3
satisfies Fermat’s principle, which requires that each must be a path of
stationary phase. In other words, the total phase accumulation or delay along
the path from beginning to end would undergo only a second-order variation as
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Fig. 2-3.  Thin-screen geometry for a LEO.  The figure shows multiple
rays, with different bending angle and impact parameter values, all con-
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α

α

θ

θ



Scattering of Electromagnetic Waves 85

a function of a nearby trial deviation of the path from the actual path, while still
satisfying the boundary conditions. Usually the stationary value of the phase
delay along a ray is a local minimum. However, for the scenarios shown in
Fig. 2-2 the a ray, unlike the m and b rays, is a path that provides a local
maximum in the phase delay. We know from the Calculus of Variations that
this can happen when a ray at some interior point along its path comes in
contact with the envelope associated with the family of rays whose members
are generated by varying some parameter, such as the impact parameter of a
ray. In optics this envelope is known as the caustic, or burning curve.
Appendix A provides a brief introduction to ray theory using the stationary-
phase concept. Appendix B discusses the properties of a caustic.

From Eqs. A-1 through A-5 in Appendix A, it follows that the bending
angle α( )*r  and the impact parameter a  in a locally spherical symmetric
atmosphere are given by

α( )*
*

r a
n

dn

dr n r a
dr

r
= −

−

∞

∫2
1 1

2 2 2
(2.2-2a)

a n r r n r r= = =( ) ( ) sin constant* * γ (2.2-2b)

where γ  is the angle between the radius vector and the tangent vector of the
ray. When we place the GPS satellite at an infinite distance, then γ θ α= + .
The quantity r* is the radial distance of the turning point of the ray or its point
of tangency with the Earth’s limb (Fig. 2-1). The quantity n r N r( ) ( )= +1  is the
index of refraction, and N r( )  is the refractivity. (For convenience, we define
N n= −1, not N n= −10 16( ); the latter is the customary definition of
refractivity.) The quantity a in Eq. (2.2-2b) is the so-called impact parameter,
and it is a ray-specific quantity. When spherical symmetry applies, it has a
constant value when evaluated at any point ( , )r θ  on a specific ray. The
relationship given in Eq. (2.2-2b) for a  is known as Bouguer’s law. This is
analogous to the conservation of angular momentum in a central force field.
Bouguer’s law is the spherical equivalent of Snell’s law.

For the spherical symmetry assumed here, and when at a specific
observational epoch there is a unique ray producing the excess Doppler, then
Eqs. (2.2-1) and (2.2-2) show that the Doppler observations between the LEO
and occulted GPS satellite, plus the POD information about the satellites, yield
both the bending angle α  for the ray and its impact parameter a . Hence, one
can form a data sequence α κκ κ, ,  , , ,a M( ) = ⋅⋅⋅1 2 , from the excess Doppler

sequence obtained from the M observations made over the occultation episode.
This sequence ακ κ,a( ) describes the evolution over time of the bending angle
and impact parameter for a specific family of locally unique rays that are
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generated by the orbital motions of the satellites. When the geometry does not
admit spherical symmetry, then the equations and procedures for recovering
bending angle α  and ray path tangency point r* involve ray-tracing techniques,
but they lead to the same general result, a data sequence ακ κ, *r( ) . We avoid

this complication here.
When spherical symmetry does apply, and there is a unique ray from the

GPS satellite to the LEO at each epoch in the observational sequence, one can
invoke the Abel transform to recover the radial profile of the refractivity from
the sequence ακ κ,a( ). This is given by (see Appendix A)

N a n a
a

d
a

( ) ˙ log ( )
( )= =
−

∞

∫1
2 2π

α ξ
ξ

ξ (2.2-3)

Here α ξ( ) is the functional form of the bending angle versus impact parameter
ξ  obtained from the data sequence α κκ κ, ,  , , ,a M( ) = ⋅⋅⋅1 2 . Implicit in the form

for the Abel transform given in Eq. (2.2-3) is the vanishing of the bending angle
for large values of the impact parameter, that is, α ξ ξ( )  as → → ∞0 .

The gradient of n r( )  in Eq. (2.2-2a) is given by dn dr/ . But, note that this
integral readily allows a change of variable. For example, we can define
another variable ρ = kn r r( ) ; Eq. (2.2-2) becomes

α ρ ρ
ρ ρ ρ

ρ ρ ρ γ
ρ

( ) ,   sin* *

*

*
*

= −
−

≡ =
∞

∫2
1 1

2 2n

dn

d
d ka (2.2-2′)

The functional form for the bending angle is transformed from α( )*r  to α ρ( )* ,
which is acceptable provided we know or can recover the functional form for
n( )ρ , and provided no super-refractive zones exist. The integrals in
Eqs. (2.2-2′) and (2.2-3) form an Abel transform pair.

A problem arises when multiple rays from the same GPS satellite meet at
the LEO, which is shown in Fig. 2-3. In this case, the signal arriving at the LEO
is a composite of these multiple rays. The superposition of these rays causes
interference in the phase and amplitude of the signal. Spectral techniques are
useful for unraveling the excess Doppler frequency and amplitude for each
interfering ray. We next address multipath in a ray theoretic context.

2.2.1 Multipath, Shadow Zones, and Caustics According to
Geometric Optics

A polarity change in the gradient of the bending angle is an almost sure
sign that multipath and/or shadow effects will be seen, particularly if the
observer is far from the location of these reversals in the gradient. Diffraction
effects also are likely to be present in at least part of the observations if the
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change is sharp enough. Figure 2-3 provides the basic geometry for a particular
thin-screen model, which we discuss later. Here h is the altitude (relative to an
arbitrary but defined reference altitude R , say, sea level) of a point in a thin
screen through which the ray from the occulted GPS satellite passes on its way
to the LEO. The screen in this figure is oriented perpendicularly to the straight
line between the LEO and the GPS satellite; hLG  is the altitude in the thin
screen of the intersection of the LEO–GPS line. It varies nearly linearly with
time during an occultation episode, about 1 minute in duration for the neutral
atmosphere. Figure 2-3 shows a collimated beam from the GPS satellite to the
left of the screen, which is tantamount to setting the GPS distance DG  from the
Earth’s limb to infinity. It is appropriate in this case instead to use for LEO
limb distance the quantity D, which is the reduced distance between the LEO
and the thin screen minus a small quantity aα . It is given by

D D D− − −= +1 1 1
L G (2.2-4)

where DL  is essentially the distance of the LEO from the limb of the Earth, and
similarly for DG . In calculating the phase at the LEO, use of the reduced
distance D instead of DL  accounts for the extra phase from the wave front
curvature resulting from the finite distance DG  of the GPS satellite from the
Earth’s limb. DG  is about 4 Earth radii, and DL  is about 1/2 an Earth radius;
therefore, D is about 10 percent smaller than DL .

From the geometry in Fig. 2-3, we see that h denotes the height at which
the asymptote of the ray intersects the thin screen. From Bouguer’s law in
Eq. (2.2-2), we have the relationship for this height h in the thin screen:

h R a r

r h R r

h h D h D r

+ = = =
+ = + +

= + + [ ] = +











sec sin sec

(sin cos tan ) cos tan

or

( ) O ,  cos( )

LG

LG

α θ α α
θ θ α θ α

α α θ α

( + )

2

(2.2-5)

Here the bending angle has been expressed as a function of thin-screen altitude

α( )h . We show later that when d daα 2( ) /  is less than a critical value, there is a
one-to-one relationship between h and the impact parameter a. In this case, it is
straightforward to transfer between α( )h  and α( )a .

Figure 2-3 shows an example where three altitudes result in bending angles
so that the rays from these particular tangent points with the Earth’s limb all
simultaneously converge at the LEO. Figure 2-4 shows a hypothetical curve for
hLG  versus h in the neighborhood of this multipath zone that might correspond
to the multiple rays shown in Fig. 2-3. This depicts a classic multipath situation.
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As discussed earlier in connection with Fig. 2-2, the condition dh dhLG / = 0
will be found to hold at two or more altitudes in the neighborhood defined by
the turning-point altitudes for these three rays. These altitudes mark the contact
points with the envelope surface to the ray family, the vertical continuum of ray
paths generated by the evolution of hLG  over time. In the immediate

neighborhood about a point h h† †, LG( )  where dh dhLG / = 0 , hLG  has a locally
quadratic (or higher) dependence on h. This results in two rays from altitudes
slightly above and below h†  that concurrently meet at the LEO when hLG  is on
the concave side of the hLG  versus h curve, and none from these two ray
families when hLG  is on the convex side. This is depicted in Fig. 2-4 at each of
the two caustic contact points. This is multipath in its simplest form.

Taking the reciprocal of dh dhLG / , we have dh dh/ LG → ∞  at h h† †, LG( ) ; so,
here there is a singularity in the density of ray paths arriving at the LEO.
Caustics occur near here. Therefore, whenever the gradient of the bending angle
d dhα / , which is nominally negative for the Earth’s atmosphere, takes the
value d dh Dα / = −1, about 0.3 mrad/km, then dh dhLG /  will be zero.

In Appendix A it is shown that the defocusing function for the atmosphere
is given by

1
1

ζ
α=̇ − D

d

da
(2.2-6)

†

hLG(2)

h (1)

hLG

h

h (2)h2
†h1

hLG(1)

Fig. 2-4. Hypothetical curve showing thin-screen alti-
tudes h versus hLG in the neighborhood of a multipath
zone.  Multipath occurs within the range hLG(1) ≤ hLG ≤
h LG(2), h (1) ≤ h ≤ h (2), and h1 and h2 mark the caustic
contact altitudes, where dhLG / dh = 0.
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The defocusing function provides a measure of the dispersal of the rays caused
by the refractive gradient. Therefore, the defocusing function gives the relative
amplitude of a ray at the LEO as a result of the ray having passed through the
atmosphere compared to the amplitude that would have been obtained without
the atmosphere. From Eq. (2.2-5) we see that in the screen ζ ˙ / LG= dh dh .

Appendix A also derives the vertical radius of the first Fresnel zone F ( )h ,
which is given by

F = λ ζD | | (2.2-7)

The condition ζ − =1 0  marks the first contact with a caustic in geometric
optics; rainbows2 occur at such points. It also marks the first (or last) encounter
of the LEO with the multiple-ray system. This condition also corresponds to the
vertical diameter of the first Fresnel zone growing infinite. Therefore,
geometric optics predicts an infinite amplitude at this point, but no such event is
observed there, partially because of the failure of geometric optics in the
neighborhood of this first contact point. The first caustic contact point
corresponds to a point where not only is the phase delay along each of the
multiple rays stationary with respect to a path variation, for example, the impact
parameter of the path, but its second-order variation also is zero.

Geometric optics is based on a second-order stationary-phase theory. A
non-zero second-order variation is required in this theory. A third-order theory
is needed to handle caustics. Here, the use of the words “ray” or “path of
stationary phase” implicitly assumes that a geometric optics treatment is valid.
Thus, necessary conditions for validity of a geometric optics treatment are that
the rays exist (see Footnote 3). Also, the altitude differences of the multipath
rays at their tangency points should significantly exceed the diameter of the
first Fresnel zone, and caustics are to be avoided.

A necessary condition for the existence of a caustic is that the defocusing
factor ζ → ∞  at some altitude. A caustic surface will be generated by the

                                                            
2 The rainbow is a caustic phenomenon. The altitude h  of the first ray making caustic
contact in Figure 2-2(b) (at t

4
) corresponds for a raindrop to the value of the impact

parameter of the incident ray from the Sun that gives rise to a rainbow. The scattering
angle of a ray, after being refracted upon entering the raindrop, internally reflected, and
refracted again upon exiting, depends on the impact parameter of the ray. This
scattering angle becomes stationary when the impact parameter is located about 85%
(for the primary rainbow) of the raindrop radius out from the center. The impact
parameters of the Sun’s rays are uniformly distributed prior to hitting the raindrop. But
the exiting rays with impact parameter values in the nearby neighborhood about this
85% value “pile up” at the stationary scattering angle, about 138 deg. Therefore, the
amplitudes of these rays add up constructively because they all have incurred
essentially the same phase accumulation at the observer. A ”caustic” ray is the result.
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continuum of ray paths whose points of tangency lie in some neighborhood
around this critical altitude. When a caustic does occur, multipath situations
also will arise where two or more ray paths arrive at the LEO from different
altitudes. Appendix B gives a short discussion of caustics in a geometric optics
context.

Caustics also are predicted in a wave theory framework, but there their
form is softened and, although brightening is predicted, the infinite amplitude
predicted by (second-order) geometric optics does not appear. Caustics in a
wave theory framework are discussed in Chapters 3 and 5.

2.2.2 Thin-Atmosphere Conditions

To calculate the effects of the discontinuities related to refractivity, we use
certain approximations that are applicable to a thin atmosphere. By a “thin
atmosphere” we mean that the atmosphere is thin geometrically and optically.
Specifically, the characteristic length of the ray path through the atmosphere L
defined by

L
sN r s ds

N r s ds

r Ho po= =
−

∞

∞
∫
∫

2
2

2

1
0

0

[ ( )]

[ ( )]
˙

( )π β
(2.2-8)

satisfies the condition that L ro/ << 1. Here s is arc length along the ray path
measured from the point of tangency. The second expression on the right-hand
side (RHS) of Eq. (2.2-8) applies to an atmosphere with an exponentially
decreasing refractivity profile and with a scale height Hpo

. See Appendix A for

more detail.
The parameter β  is defined by

β = − =r

n

dn

dr

rN r

Hp

˙
( )

(2.2-9)

where the second expression applies to an exponential model for refractivity.
This parameter β  is essentially the ratio of the impact parameter of a ray to its
radius of curvature. It must satisfy the condition β << 1 or, equivalently,
d rn dr( ) / >> 0 . In effect, the radius of curvature of the ray at any point must be
much greater than the local radius of curvature of the “iso-refractivity” or
equipotential surface there. Super-refractivity situations where β > 1 over
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substantive3 path lengths are specifically excluded here for the reference
refractivity profile. In the case of the Earth, we have the happy circumstance
that for dry air L ro/ .≈ 0 05 . At the Earth’s surface the dry air component of β
is about 0.2, and at the tropopause it typically is around 0.05. On the other
hand, across a sharp marine layer boundary, β  can exceed unity.

Equation (2.2-8) accounts for first-order ray path curvature effects through
the term ( ) /1 1 2− β  in the denominator. One can calculate ray path curvature
effects once the refractivity profile is specified [4]. If s  is arc length along the
ray from its tangency point, then to first order the radial coordinate of a point
on the ray is given by

r r
s

r
˙ ( )*

*
= + −1

2

2

β (2.2-10)

With β = 0 , this gives the straight-line relationship between chord length and
radial coordinate. With β > 0 , the ray is bent radially inward. Both Eqs. (2.2-8)
and (2.2-10) show that the thin atmosphere test fails when β  nears or exceeds
unity.

Atmospheric refractivity for the Earth may be classified in increasing
difficulty as (1) locally spherical symmetric without multipath at the LEO,
(2) locally spherical symmetric with multipath at the LEO, (3) not locally
spherical symmetric because of horizontal variations, and (4) time variable
through turbulence, advection, and so on. Our reference refractivity profile will
satisfy the thin atmosphere conditions, and it will be spherical symmetric
without multipath. We will explicitly avoid locally harsh refractivity
conditions, such as critical refractivity conditions found at times in the lower
troposphere, other than the discontinuities under study, which actually do
include super-refractivity cases. Our discontinuities or sharp transitions are
assumed to be sufficiently mild that we need not account via the Fresnel
formulas for reflections from the boundary, nor for Love or Rayleigh-like
waves propagating along or near the boundary surface, nor for evanescent
waves. We also assume that our reference atmosphere is temporally smooth and

                                                            
3 The validity of Eq. (2.2-2) requires that rn r a( ) ≥  along the ray path. This condition is
required to obtain real solutions to the Euler differential equation (see Appendix A),
which all ray paths must satisfy in a spherical symmetric medium. This condition
rn r a( ) ≥  must hold at all points along the ray path to obtain a stationary-phase path
satisfying the boundary conditions and passing through the turning point at r

*
. In other

words, if this condition is not satisfied, then there is no ray with the impact parameter
value a satisfying the boundary conditions. This global condition translates into a local
necessary condition (but not sufficient; see Section 6.4.2) that requires that β < 1 in
some neighborhood about a turning point.
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does not cause appreciable scintillation (although scintillation is almost always
present to some degree in sounding data). Even a cursory review of wave
and/or ray theory literature in such disparate fields as electrodynamics and
seismology will reveal that propagation across a boundary is potentially a very
complicated problem without simplifying assumptions, such as those in the
foregoing discussion.

We note from Eq. (2.2-8) that L  is about 400 km for dry air, but the along-
track resolution δL  is closer to

δ δ
β

δ
β

L
r r ro=
−

≈
−

2
2
1

225
1

 km (2.2-11)

where δr  is the vertical resolution. This is the path length in a shell of thickness
δr , essentially the chord length corrected to first order for ray path curvature
( )– /1 1 2− β . Using the Fresnel vertical diameter for δr , we obtain about 180 km
at sea level for dry air and 280 km in the stratosphere. Because both the
defocusing factor ζ  and the ray path curvature parameter β  depend strongly on
the refractivity and its gradient, δL  for the water-vapor-laden lower troposphere
can vary widely. Near-super-refractivity situations where β → 1 render the
above definition of δL  less meaningful.

2.3 Thin Phase Screen Models

Diffraction effects occur to a varying degree whenever a sharp change in
refractivity or in one of its derivatives occurs. Sommerfeld defined the word
“diffraction” more than a century ago to cover those effects not predicted by ray
theory. Because diffraction effects for a spherical geometry are difficult to
calculate, one often attempts to substitute a simpler model that yields basic ray
theory results plus diffraction effects, and which has acceptable agreement with
rigorous wave theory results. In a thin-screen model, one substitutes for the
atmosphere a thin-screen proxy, nominally transparent, through which any
passing ray experiences a position-dependent phase delay upon emerging from
the screen. The relationship between position in a thin screen and altitude of the
turning point of the actual ray in the atmosphere depends on the choice of
screen and on the index of refraction profile. The thin-screen model is a
surrogate for the transmission effects of the real atmosphere on the traversing
GPS signal. One chooses a phase profile for the thin screen that attempts to
match the LEO-observed phase delay profile. This is accomplished by
assigning a phase delay, embedded in the thin screen at a given thin-screen
position, that corresponds to the actual atmosphere-induced phase delay
predicted by geometric optics. If a certain thin atmosphere condition holds, the
assigned phase delay values in the screen can be made to be a single-valued
function of the thin-screen position. In this case, the assignment leads to the
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proper total refractive bending angle α( )a  when a path of stationary phase is
followed from the GPS satellite along the incoming ray asymptote through the
thin screen and along the outgoing ray asymptote to the LEO. When this thin
atmosphere condition is satisfied, the profile of this phase delay in the thin-
screen yields the LEO-observed phase and Doppler of the primary rays
(excluding, for example, reflections) predicted by geometric optics for the
actual atmosphere, including multipath and shadow regions where appropriate.
This thin-screen model then is used to calculate the observed diffraction effects
using a scalar diffraction theory such as the Rayleigh–Sommerfeld integral [5].

The thin-screen model has been discussed in many references over the
years, where it has been applied to scintillation and diffraction studies [6–11].
For phase scintillation applications, [9] also discusses the wave propagation
coherency conditions that an atmosphere with a finite scale height must satisfy
in order for the thin-screen model to remain valid. These coherency conditions
can be related in part to the “thin atmosphere” conditions given earlier in
Section 2.2, namely, that β  and L ro/  should be small.

Chapter 1 points out that the thin-screen concept can be extended to include
multiple thin screens in tandem; see, for example, [10,11]. Here one replaces
propagation through the actual atmosphere with field values holding on m  thin
screens, which are separated along the axis of propagation by some assigned
distance Dk, k = 1,2,⋅⋅⋅, m. The propagation of the wave between successive
screens is accomplished using the Fresnel–Kirchoff scalar diffraction integral
that applies asymptotically when the wavelength of the propagated wave
becomes a very small fraction of the scale of the screens. The actual
inhomogeneous medium in between screens is replaced by a homogeneous
medium, but the phase accumulation that would have resulted is lumped into an
extra position-dependent phase increment that is added to the wave at each
screen. In this way the field values for amplitude and phase on one plane are
mapped to the field values on the next plane, and so on. This approach has been
shown to work well in a “forward” propagation process through an
inhomogeneous medium.

2.3.1 The Helmholtz–Kirchoff Integral Theorem

This theorem provides the basis for scalar diffraction theory [3,12]. It may
be used in either a “backward” or “forward” propagation mode, i.e., toward an
emitter or away from it. In the backward mode, the scalar diffraction integral is
used to map the phase and amplitude sequences measured by the LEO through
the vacuum to an equivalent surface much closer to the Earth’s limb.
Appendix A derives both the forward and backward modes from the
Helmholtz–Kirchoff theorem. From Fig. 2-2 it is clear that, if we could move
the surface containing the LEO and its vertical motion to another surface much
closer to the limb, fewer rays would cross each other between the limb and the
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closer surface. A virtual LEO moving in the closer surface would experience
reduced multipath (see Fig. 1-13). The refractivity profile of the real
atmosphere is recovered from the phase and amplitude profiles mapped from
the LEO trajectory to the new closer surface. The so-called “back plane”
propagation method is one example of this technique [13–15]. Here the chosen
surface for convenience is planar, actually a line in coplanar propagation, and it
is oriented perpendicular to the LEO–GPS line, or perhaps canted slightly. In
this closer “plane” with hopefully far fewer multipath episodes, one derives
bending-angle and impact parameter profiles. From Eq. (2.2-1) it follows that
d k dsB Bϕ α= , where ϕB  is the mapped phase in the back plane mounted
perpendicular to the LEO–GPS line, and dsB  is an incremental arc length along
the plane. Therefore, the gradient of the mapped phase along this plane yields
the bending angle in that back plane, from Bouguer’s law the impact parameter.
The Abel transform then yields the refractivity profile.

2.3.2 The Space Curve for Impact Parameter

There is nothing in the Helmholtz–Kirchoff integral theorem (see
Appendix A), the basis for scalar diffraction theory, that requires planarity for
the phase screen; it could be a curved surface. Or, if it is planar, it need not be
mounted perpendicular to the LEO–GPS line; these are matters of convenience.
We could as well adopt as a canting angle α αm a= ( )  for the clockwise
rotation. This is suggested in [14]. In this case, the “height” h in Eq. (2.2-5)
becomes h a R= − . It is strictly the impact parameter minus the reference
radius, and it becomes an arc length along a curve defined by the intersection of
the plane of propagation with the impact parameter surface. This space curve
for the impact parameter in general is not straight. Since there is a one-to-one
relationship between impact parameter and bending angle when spherical
symmetry holds, then we are assured that h( )α  will be monotonic. Of course,
we don’t know a priori the value of α αm a= ( )  and, therefore, its shape without
first processing the observations.

We show one way to recover the impact parameter curve in space
coordinates from the LEO phase and amplitude observations. To simplify the
geometry here we assume that the occulted GPS satellite is infinitely far in the
θ π=  direction; therefore, the angle γ  in Bouguer’s law in Eq. (2.2-2) between
the radius vector and the tangent vector of the ray becomes γ θ α= + . The
finite case is a straightforward extension of the following, but it requires more
care in handling the relative motion of the satellites during the occultation.

The phase delay ϕ  along the ray R  from its turning point at ( , )* *r θ  to a
point ( , )r θ  can be obtained from its defining integral:
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ϕ θ= = + ′ =
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where in the last integral we have used Bouguer’s law in Eq. (2.2-2) to rewrite
d drθ /  in terms of the impact parameter. We assume that the point ( , )r θ  is out
of the atmosphere where n ≡ 1. By integrating by parts and using Eq. (2.2-2),
we obtain for the phase at ( , )r θ

ϕ θ α α α ρ ρ

θ α α α

= + + +



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= + =
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cos( ) ( ) ,

sin( ),  ( )
(2.3-2)

Setting α ≡ 0 , ϕ θ→ kr cos , which is the cumulative phase along a planar
wave traveling in the ẑ  direction (see Fig. 2-5) from the line defined by
θ π= / 2 . Therefore, ϕ θ− kr cos  is the excess phase caused by the refractivity.
If we hold r  and θ  fixed, then we note from Eq. (2.3-2) that
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∂

α α α α
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which merely underscores the stationary property of the phase on a ray, and the
difficulty in using phase directly in ray theory to recover the impact parameter
of the ray.

If we vary r  and θ  in Eq. (2.3-2), holding a  fixed, we obtain

d k ad drϕ θ θ α= − + +( )cos( ) (2.3-4)

We now set r a=  and θ θ π α= = −a a/ ( )2 . By doing so, we have positioned
our point ( , )r θ  at the tip of the impact parameter vector ra a( ) . This is indicated
in Fig. 2-5, which shows the geometry (but definitely not to scale) of the impact
parameter space curve ra a,θ( )  with r aa = . The form for ra a( )  in terms of unit

Cartesian vectors x̂  and ẑ  is given by

r z xa a a a a( ) ˆ sin ( ) ˆ cos ( )= +( )α α (2.3-5)

Bouguer’s law requires that ra aa r a( ) = =  and that ra a( )  is perpendicular to

T z x( ) ˆ cos ( ) ˆ sin ( )a a a= −α α , the unit tangent vector of the ray passing through
the tip of ra a( ) . At this point a a,θ( ), a small change in position alters the phase

by an amount dϕ . According to Eq. (2.3-4), to first order this is given by

d akd drϕ θθ π α= − = − +/ 2 0 (2.3-6)

There is no first-order variation in phase in the radial direction because the ray
through the tip of ra a( )  is perpendicular to ra a( ) .

This impact parameter vector ra a( )  traces out the impact parameter space
curve ra a,θ( ) , as indicated by the schematic example in Fig. 2-5. The
incremental arc length vector d as  along this space curve and the angle ψ a

between d as  and ra a( )  are given by
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where ′ =α αd da/ ; also, r̂a  and θ̂θa  are unit orthogonal vectors in the rotating
frame. It follows that, except at super-refractivity points, the impact parameter
values are denumerated uniquely along the curve traced out by ra a( )  as a  is
varied. With spherical symmetry, a unique relationship holds between a  and
α , except at a super-refractivity point, which is discussed later.

To generate the impact parameter curve, we start from a known point on the
curve where no multipath exists and, assuming that it is a high point, we
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continue downward. Let α θ θ π αa a1 1 1 12, ,  /( ) = − ( ) denote such a known

point, as shown in Fig. 2-5. We assume that, in addition to knowing
unambiguously the value of α  at a1 1,θ( ), we also know the value of ′α . The

back propagation diffraction integral, for coplanar propagating in a vacuum the
phase and amplitude measurements made by the LEO to another point at r1 (see
Eq. (A-22) in Appendix A), is given by

 ( ) exp ˆ ˆL

L

L L L L/E
i E

r
ikr ds

C
r

r
r r1

1
1 2 1 1= ( ) −( ) ⋅ ( )( )



∫λ

n (2.3-8)

where r1 1L L= −r r , rL  denotes a point at the LEO, dsL  denotes an incremental
arc length along the curve C  defined by the trajectory of the LEO over which
observations were made during the occultation, and ˆ

Ln r( ) is the outward unit
normal vector to the curve C . The intervening medium between points rL  and
r1 is taken as a vacuum. We apply this path integral using the LEO observations
to obtain the mapped phase and amplitude at the impact parameter point
r r1 1= ( )a a . (There are several important details required in practice related to

establishing integration limits, preserving phase coherency, i.e., δ λr1L << ,
where δr1L  is the error in r1L , over the span of the integral by accounting for the
relative satellite motion, and maintaining phase connection. We omit those
details here [13–15].) Even though this point r r1 1= ( )a a  is well inside the
refracting atmosphere, we treat it as a proxy curve in a vacuum, just like a thin
screen. Let the phase of the mapped field E aar 1( )( ) from the diffraction integral

in Eq. (2.3-8) at this impact parameter point be designated as ˆ ˆϕ ϕ1 1= ( )a . Next,
we alter ra a1( ) by a small amount to ra a2( )  with a a a2 1= + ∆ , as shown in

Fig. 2-5 with ∆a < 0 . It follows that a first approximation for ra a2( )  is given

by

r r r Ta a aa a a a2 1 1 11
( ) = ( ) + −˙ ˆ ∆ ∆θ (2.3-9)

where T T1 1= ( )a  is the unit tangent vector in the direction of the ray passing

through the point a1 1,θ( ), θ π α1 12= − ( )/ a . As a zeroth approximation for

∆θ , we have ∆ ∆θ α( )0
1= − ′( )a a . To this provisional point for ra a2( )  at

a a1 1
0+ +( )∆ ∆, ( )θ θ , we use the diffraction integral again to obtain the phase

ˆ ( )ϕ2
0  from the mapped complex field E a a1 1

0+ +( )∆ ∆, ( )θ θ . Taking the

difference in the mapped phases at a1 1,θ( ) and at a a1 1
0+ +( )∆ ∆, ( )θ θ ,
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∆ ˆ ˆ ˆ( ) ( )ϕ ϕ ϕ0
2
0

1= − ( )a , it follows from Eq. (2.3-5) that an updated estimate of
∆θ  is given by

∆ ∆ ∆θ ϕ( )
( )ˆ
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1 2
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= − = + = +
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a a

a
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(2.3-10)

The updated estimate of θ2 is given by θ θ θ2
1

1
1( ) ( )= + ∆ . Mapping the LEO

field again using the diffraction integral to the updated provisional point on the

impact parameter curve a2 2
1, ( )θ( ) gives us ˆ ( )ϕ2

1 . We again obtain from the

difference in mapped phases ∆ ˆ ˆ ˆ( ) ( ) ( )ϕ ϕ ϕ1
2
1

2
0= − , and use Eq. (2.3-10) to obtain

an updated value ∆θ ( )2 . We iterate until convergence is achieved. This gives
the point a2 2,θ( ) with α π θa2 22( ) = −/ . Note that at this new point a2 2,θ( )
we now have the converged phase ˆ ˆϕ ϕa2 2( ) = , the bending angle

α α π θa2 2 22( ) = = −/ , and an updated value for ′ = − −( )α ϕ ϕ2 2 1 2ˆ ˆ / a  to start
the next step at a a a3 2= + ∆ . By this way of succession we generate the impact
parameter curve ra a( )  over the range of impact parameter values relevant to the
occultation.

The most important aspect of this approach is that it facilitates direct
recovery of the refractivity profile. Since we now have recovered an
unambiguous bending-angle profile a a, ( )α( ), we can use the Abel transform in
Eq. (2.2-2') to recover log ( )n a , and thence log ( )*n r  from a r n r= * *( ).

If a super-refracting layer occurs at a given altitude range, then ray theory
imposes restrictions on the location of tangency points in and below the layer.
In a super-refracting layer located in the range r r rd u≤ ≤ , the condition
rdn dr n/ + ≤ 0  holds. Here the radius of curvature of a ray would be shorter
than the local radius of curvature of the equipotential surface. For tangency
points in the layer and below it down to a certain critical altitude denoted by
r rc

d< , a ray could not escape in a spherical stratified medium. The ray with its

tangency point at the lower critical altitude r rc
* =  below the layer just manages

to pass through the layer and escape from its upper boundary at r ru=  parallel
to it. This is analogous to the parallel path direction required by Snell’s law of a
refracted ray exiting a planar surface at the critical internal angle of incidence.
It follows from Bouguer’s law that the ray through this lower critical tangency
point below the layer has the same impact parameter value as the ray just
grazing the top of the layer where super-refractivity first sets in, i.e.,

n r r n r rc c
u u

( ) = ( ) . (See Section 6.5.) These two rays have in general different
bending angles. Therefore, the impact parameter space curve has a
discontinuity in θa , i.e., two different bending angles, but with the same value
for the impact parameter. Hence, ds daa / → ∞ , dx dz aa a/ tan ( )→ − α . The
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break is initially parallel to the top ray just grazing the top of the super-
refractivity layer, and finally it is parallel to the emerging ray from the lower
critical tangency point below the bottom of the layer.

Ray theory alone cannot tell us about n r( )  between the upper boundary of a
super-refracting layer at r ru=  and the critical altitude below the lower

boundary at r rc=  because no ray with its tangency point within these bounds
can exist in a spherical stratified medium. There is a hiatus within the bounds
r r rc

u≤ ≤* . However, in practice a super-refractive layer tends to be relatively
thin, usually caused by a marine layer. (In radio transmission research, super-
refractivity is called ducting.) Therefore, one can use the recovered profiles for
n r( )  above and below the super-refractivity zone r r rc

u≤ ≤* , plus some
atmospheric physics, to estimate n r( )  in between. In wave theory, this super-
refractive zone corresponds to the attenuation or tunneling part of the Airy
function of the first kind. Wave theory (Section 5.8) predicts a very weak but
non-zero field for this zone, analogous to the Fresnel decay in amplitude
observed behind a shadow boundary from a knife-edge. Section 2.7 includes a
discussion of a thin-screen/scalar diffraction model for the field observed at the
LEO from a super-refractive boundary, a limiting case where dn dr/ → −∞
with ∆n  finite. Geometric optics already becomes inaccurate near these
boundaries at r rc

* ≤  and at r ru* ≥  (see Fig. 2-12).
The vertical resolution potential of the impact parameter space curve

approach is essentially that of wave theory. This is discussed in Chapters 1
and 6, but vertical resolution is more limited by departures from spherical
symmetry and other data processing properties [4,5].

Regarding caustic contact points, they have of course disappeared on the
ra a( )  space curve for the impact parameter. The existence of a caustic contact
point is observer-position dependent, as with rainbows. From Bouguer’s law in
Eq. (2.2-2), if we alter θ  and take into account that a new ray with a new
impact parameter value will pass through that altered point ( , )r dθ θ+ , we have

da

d

r

rθ
θ α
θ α α

= +
− + ′

cos( )
cos( )1

(2.3-11)

which is zero when we set r a=  and θ π α= −/ 2 .
On the other hand, if we set θ θ= L  and r r= L , then we have the

defocusing-dependent relationship between a  a n d  θL ,  i .e . ,

da d r/ cosL L L Lθ ζ θ α= +( ), where ζ θ α αL L Lcos− = − +( ) ′1 1 r . da d/ Lθ  can be
positive or negative depending on the sign of the defocusing factor ζL . If we set

θ θ θL L L
˙= +t o , then we have the relationship between a  and time,

da dt r/ ˙ cosL L L L= +( )ζ θ θ α . For anomalous rays, da dt/  is positive for a
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setting occultation; the impact parameter migrates upward with time for these
anomalous rays and at the same time downward for normal rays.

It follows that, for the purpose of forward propagating to the LEO the
perturbations in phase and amplitude caused by the atmospheric refractivity
perturbations, we could assign a phase profile ϕ( )a  to the impact parameter
space curve that is given from Eq. (2.3-2) by

ϕ α α ρ ρ( ) ( ) ( )a k a a d
a

= +





∞

∫ (2.3-12)

where α( )a  is the reference plus perturbed bending-angle profile calculated for
a spherical symmetric atmosphere from geometric optics. Moreover, given
α( )a , we can generate the impact parameter space curve ra a( )  from its
definition in Eq. (2.3-6). We show in Chapter 5 using a full-spectrum wave
theory (see Table 5-1) that the stationary values with respect to spectral number
of the spectral density function for phase delay in wave theory, when they exist,
are very closely equal to ϕ( )a , given in Eq. (2.3-12).

On the other hand, the impact parameter space curve generated by ra a( )  is
likely to have a complicated shape in multipath situations. Computing the
distance from the ra a( )  curve to the LEO is somewhat less convenient than
simply using the Fresnel approximation with a planar screen. This alternate
approach works well when the caustic avoidance condition is met, which relates
to the thin atmosphere conditions cited above in Eqs. (2.2-8) and (2.2-9).

2.3.3 The Fresnel Phase Screen

Here we use a single planar thin-screen model to study the multipath and
diffraction processes from a single boundary embedded in a laminar
atmosphere possessing an otherwise smoothly varying radial gradient in
refractivity. The screen is nominally oriented orthogonal to the LEO–GPS line,
and the rays impinging on and emerging from the screen are the straight-line
asymptotes from the LEO and the GPS satellite (see Fig. 2-3). The relationship
between the altitudes h and hLG  is given in Eq. (2.2-5). The single thin-screen
model also could be applied to multiple but spherical symmetric boundaries,
given the bending-angle profile according to Snell’s law that results from a ray
transecting these multiple layers (see Appendix A). As an analysis technique
for recovery of the refractivity profile, the usefulness of the planar thin-screen
model is limited to thin atmospheres, conditions not always found, particularly
in the lower troposphere. Also, if atmospheric refractivity has significant
horizontal gradients, then the multiple-screen approach would be a better
choice.
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To maintain a one-to-one relationship between h and a , the condition
dh da/ > 0 must hold. It follows from Eq. (2.2-5) that this condition is
equivalent to the condition

dh

da
a

d

da
a

d

da
= +



 = + >sec tan ˙α α α α α

1 1 0 (2.3-13)

which is equivalent to proscribing any caustics from occurring in the phase
screen (where dh da/ = 0 ). If α  is given by an exponential refractivity model,
then it can be shown [see Eq. (2.3-18)] that the condition in Eq. (2.3-13) is
equivalent to the condition β π< ≈−( ) ./2 0 41 2 . This is basically double the
refractive bending from dry air at sea level. In the lower troposphere, this
condition can readily be violated at a marine layer boundary, but as α
decreases secularly with altitude, Eq. (2.3-13) is more readily satisfied, even
with larger values of d daα / . For h lying within the range of values where the
condition in Eq. (2.3-13) is violated, i.e., dh da a d da/ ( / )= + <1 0α α , there
are in general at least three values of bending angle that apply. The assignment
of a unique phase function to the screen [based on Eq. (2.3-7)] is not possible
for this range of h values.

On the other hand, we could cant the screen clockwise by a small angle
αm . Then, in that screen the altitude relationship would be
h a Rm= −( ) −sec α α , and the caustic avoidance condition becomes
1 0+ −( ) ′ >a mα α α , which might be easier to satisfy. The thin-screen phase

function to be given in Eq. (2.5-1c) would have an extra factor of cosαm .

2.3.4 Suitability of the Thin-Screen Model for Diffraction Analysis

The value of the thin-screen approach for qualitative study of Fresnel
processes in the Earth’s atmosphere partially depends on the refractivity being
fairly stratified along equipotential surfaces as well as the thin screen being
viewed from afar. Also, the thin atmosphere condition should hold. If the
along-track inhomogeneity in refractivity is significant, then better results likely
would require a multi-screen approach. We know that the fidelity of the
diffraction results from the single thin-screen model is fairly good for a grazing
occultation in a uniform medium from an opaque surface—e.g., the Earth’s
limb [16]. When ro >> λ , the diffraction effects from a three-dimensional
opaque object can be calculated by replacing the shadow zone on the surface of
that object with a disk perpendicular to the incident ray path and bounded by
the silhouette of the object [17]. However, a curved and nearly transparent
surface, across which a discontinuity in refractivity or in one of its derivatives
occurs, can support scattered rays that arise from a combination of external and
internal reflections and surface propagation (evanescent waves) yielding, for
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example, rainbow and waveguide effects. These would be more difficult to
model with the thin screen without first solving Maxwell’s equations or some
other wave propagation technique for the actual surface and surrounding
medium and then adopting a phase and amplitude profile for the thin screen that
corresponds to the actual observed phase and amplitude.

There are three-dimensional diffraction techniques discussed in the
literature that use both geometric and physical optics approaches to evaluate
scattering from a variety of relatively simple geometrical objects. Helmholtz’s
equation in a stratified medium, as a boundary value problem in Potential
Theory, can formally be solved for simple surfaces, such as spheres and
cylinders, and with relatively simple asymptotic boundary conditions, such as
incident planar electromagnetic waves. Solutions for scattering from a
conducting or a dielectric sphere in a uniform medium were developed starting
about 95 years ago by G. Mie, P. Debye, G. Watson, and others. Mie scattering
theory arose from the study of scattered light from droplets. Asymptotic
solutions to Helmholtz’s equation for ro >> λ  also were worked out during the
early decades of the 20th century, and parabolic equation techniques for wave
propagation have evolved greatly in the last 20 years [18].

Chapter 5 presents a wave theory approach that deals more rigorously with
the diffraction problem discussed here. There a discontinuity in a refraction-
related property is embedded in a spherical atmosphere possessing a significant
refractive gradient. A modified Mie scattering theory technique is developed to
deal with wave propagation through the refracting medium and across the
discontinuity. Good agreement holds for a single scattering surface between the
thin-screen results here and the more rigorous wave-theoretic results in
Chapter 5, under the caustic avoidance assumption in Eq. (2.3-13) and for
positions away from external reflections and rainbow caustics. The latter are
caustics arising from multiple internal reflections and refraction within the
sphere.

2.3.5 A Phase Profile for the Thin Screen

For the purpose of describing diffraction and multipath processes, we use
here the perpendicular mounted phase screen described above, keeping in mind
the possibility that phase screen caustics might occur. Let ϕ( )h  be the nominal
thin-screen phase delay at a thin-screen altitude h. We must now set this profile
using this model so that the predicted phase observed at the LEO  matches the

actual atmosphere-induced phase delay observed by the LEO. Let ψ h hLG , ˜( )  be
the cumulative phase observed by the LEO for a ray starting from the thin
screen at an arbitrary altitude h̃ . From Fig. 2-3, we see that

ψ ϕ ϕ= + = −( ) + +kl k h h D h˜ ( ˜)LG

2 2 (2.3-14)
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where k  is the wave number of the ray, k = 2π λ/ . In geometric optics, a ray
path is defined by the condition that the observed phase obtained from that path
is stationary. The stationary-phase condition on the ray path, from the GPS
satellite (infinitely afar) through the thin screen to the LEO, requires that
∂ψ ∂/ h̃ = 0 ; that is,

∂ψ
∂

ϕ α ϕ
˜

˜

˜ sin ˜
LG

h
k

h h

l

d

dh
k

d

dh
= − + = + = 0 (2.3-15)

It follows for small bending angles that

ϕ α α( ) sin ( ' ) ' ˙ ( ' ) 'h k h dh k h dh
h h

= ( ) =
∞ ∞

∫ ∫ (2.3-16)

Here it is assumed that α( )h → 0  as h → ∞ . The LEO-observed stationary
phase is given by ψ ψh h h hLG LG LG,( ) = ( )[ ] , where h is the altitude in the thin

screen providing the stationary-phase value for the LEO located at hLG , and it is
given in terms of the impact parameter by Eq. (2.2-5). It may not be unique if
multipath is present. Comparing the phase ϕ( )h  in Eq. (2.3-16) for the planar
thin screen with the phase ϕ θ( , )r  given in Eq. (2.3-2) for a ray at the point
( , )r θ , the difference is the term r acos( )θ α α+ + . Through second order, this
term is just r cos secθ α , the slant distance to the point h in the screen, which

from Eq. (2.3-14) is ˜
LG

/

h h D−( ) +( )2 2
1 2

.

2.3.6 Bending-Angle Perturbations

To apply the appropriate phase profile ϕ( )h  for the thin screen according to
Eq. (2.3-16), we need the appropriate form for α( )*r . It is convenient to break
α( )*r  into two parts: the reference bending-angle profile α( )*r  from a reference
refractivity profile, and the perturbed component of the bending angle δα( )*r
due to the refractivity-related discontinuity. For the reference profile, we use
the bending angle from an exponential profile for the atmospheric refractivity.
This is given by

n N
r r

Ho
o

po

= + − −







1 exp (2.3-17)

Appendix A [Eq. (A-30)] derives the form for α( )*r  that this refractivity profile
generates. It is given by



104 Chapter 2

α π β β( ) ( ) ( ) .*
*

* * *
*

r
r

H
N r

p

= + − + +( )2
1 2 1 0 28 2 L (2.3-18)

Here N r n r( ) ( )= −1 and β = ′ =| / | /n r n Nr Hp . This expression is very

accurate for thin atmospheres, i.e., β <≈ 1 2/ .
We now need expressions for δα( )*r  for the different cases. A ray with its

point of tangency below the discontinuity travels through both the “+” and the
“–” regimes when its radius of curvature is greater than ro , as indicated in
Fig. 2-1. It follows that the bending angle observed by the LEO is given from
Eq. (2.2-2) by

α

α

r

a
n

n

dr

n r a

n

n

dr

n r a
r r

r r r

r

r

r
o

o

o

o

*

*

* *

( ) ( ) ( ) ( )
,

( ),

*

( ) =

− ′



 −

+ ′



 −









 ≤

>


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
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
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





−
−

− −

+

+ −

∞

+

∫ ∫2
2 2 2 2

  

(2.3-19)

where a r n r− −= * *( ) , and where n r+ ( )  and n r− ( )  are functions describing the
index of refraction in the + and – regimes, respectively. Here ′ =n dn dr/ . In
Eq. (2.3-10), α + ( )*r  is the bending angle for points of tangency of the ray lying

in the + regime where n r+ ( )  applies, and, therefore, it is given by Eq. (2.2-2)
with n n r= + ( )  or by Eq. (2.3-18) when the refractivity profile is given by
Eq. (2.3-17). Equations (2.2-2) and (2.3-19) are valid only over integration
intervals where n r( )  is differentiable. These equations have to be appended
with discrete Snell’s law terms at points where n r( )  is discontinuous, and when
n r n ro o

− +( ) > ( ), the inequality r ro* ≤  in Eq. (2.3-19) also must be amended to
account for critical refraction. For the case where the gradient of n r( )  is at least
piecewise continuous, Eq. (2.3-19) can be recast into the form

α α

α α

r r

a
n

n n r a

n

n n r a
dr r r

r r r r

r
o

o

o

* *

*

* * *

( )

( ) ( ) ( ) ( )
,

( ) ( ),  

( ) − =

− ′



 −






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


 −




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
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
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
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−

−
+
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∞ −
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∫2
1 1

2 2 2 2
  

(2.3-20)
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Here, α − ( )*r  has a connotation similar to α + ( )*r ; i.e., it is the bending angle

that would be obtained from Eq. (2.2-2) if n r− ( )  applied to the entire
atmosphere. Equation (2.3-20) may be generalized from a single boundary
geometry to the multiple-layer case (see Appendix A).

The evaluation of the integral in Eq. (2.3-20) requires differential
techniques, which will be found in Appendix A. Equation (2.3-20) involves
terms of the form α α− +−( ) ( )* *r r  plus additional terms to account for the

differences between a− , a+ , and a r n ro o o
± ±= ( ) . For example, if we write

α α± ±= [ ]( ) ,* *r p r , where p is the parameter to be varied, then we can linearize

α α+ −−( ) ( )* *r r  by the form

α α ∂α
∂

+ −− =( ) ( ) ˙* *r r
p

p∆ (2.3-21)

It is shown in Appendix A, for example, that when p is the scale height,

∂α
∂

α α β γ
H H

K
H

H
p p

H
p

p
o o o

o
ˆ O ,= = − + ( )[ ]





1
2

  (2.3-22)

Also, when p is the normalized lapse rate γ = ( ) −dT dr T 1, which is a constant,
one obtains

∂α
∂γ

α α β γγˆ O ,= = + ( )[ ]



H K H Hp p po o o

3
8

  (2.3-23)

In Appendix A, the integrals in Eq. (2.3-20) are computed to zeroth order in β
(i.e., no ray path curvature corrections are applied, but for Case A, β is
included), and to first order in the discontinuous parameter of interest for the
three cases cited above: discontinuous refractivity, discontinuous scale height,
and discontinuous lapse rate. The reference refractivity and refractive bending-
angle profiles are given for a constant lapse rate by Eqs. (A-37) through (A-39).

2.3.7 Case A: A Discontinuity in Refractivity

Case A may be considered as a limiting case for a ray that crosses a very
sharp boundary, such as a well-delineated marine layer in the lower troposphere
or a sporadic E-layer in the ionosphere. Let n r( )  have a discontinuity across the
surface r ro= . Then n r( )  has the form

n r n r r r n r n ro( ) ( ) ( ) ( )= + −( ) −[ ]− + −H (2.3-24)
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where H r ro−( )  is the Heaviside function and n r+ ( )  and n r− ( )  are well-

behaved reference functions, as obtained, for example, from Eqs. (A-37) and
(A-38). Therefore, the gradient of n r( )  has the form

      
dn

dr

dn

dr
r r

dn

dr

dn

dr
r r n r n ro o o o= + −( ) −







+ −( ) ( ) − ( )[ ]
− + −

+ −H δ (2.3-25)

where δ r ro−( ) is the Dirac delta function. Let σ be defined by

σ 2 =
−( ) ≤

r r

H
r ro

p
o

o

,    (2.3-26)

where Hpo
 is the pressure scale height at r ro= . It can be shown (Appendix A)

that an expression for Eq. (2.3-20) valid to first order in ∆N  but without ray
path curvature corrections is given by
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where ∆N n r n ro o o= ( ) − ( )+ −  and where F x( )  is given by

F x x x( ) erf( ) exp= −( ) ( )1 2 (2.3-28)

The quantity σ +  is given by

σ σ+ = +















2 2 ∆N

N

N r

H
o

o

o o

po

(2.3-29)

which is essentially equal to σ , except near σ = 0 . The second term in
Eq. (2.3-29) is just the fractional change in refractivity times the ratio of ro  to
the radius of curvature of the ray, both of which are nominally small quantities.
When ∆No < 0 , σ + = 0  corresponds to the critical internal reflection condition
and r̃ , the maximum value of r* at this critical point, is given by

˜ / ˙r r n r n r r No o o o o= ( ) ( ) = +( )+ − 1 ∆ . In geometric optics, no rays exist from the
GPS satellite to the LEO with turning points located in the interval ˜ *r r ro< ≤ .
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One can improve the accuracy of Eq. (2.3-27) by including bending along
the ray path of integration in Eq. (2.3-20); a power series in β would result.
Equation (A-49) in Appendix A accounts for most of the first-order bending for
Case A.

Figure 2-6(a) shows α α( ) ( )r r− −  near r ro=  based on a numerical
integration of Eq. (2.2-2a) plus the Snell term. The exponential refractivity
profile given in Eq. (2.3-17) is used for the reference. The values of the
reference parameters used for this figure are No = × −200 10 6 , r Ro E− ≈  3km ,
Hpo

= 7 km , γ = 0 , and ∆N No o/ /= −1 20 . Most of the jump in α arises from

the Snell term: ∆ ∆α ˙ /= −( )2 2 1 2No .

2.3.8 Case B: A Discontinuity in Scale Height

Let ∆Hpo
 denote a discontinuity in a piecewise constant pressure scale

height, which occurs across the surface r ro= . In this case, the gradient of n r( )
is discontinuous across this surface, but n r( )  is differentiable at interior points
of the integration intervals defined by Eq. (2.3-20). From Appendix A,
Eqs. (A-44) and (A-45), it can be shown that to first order in ∆Hpo
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(2.3-30)

where KH  is given by Eq. (2.3-22) for γ = 0 , and σ 2 = −( )r r Ho po* / .

Appendix A also discusses the γ ≠ 0case. Depending on the physical
circumstances present at a boundary layer in the real atmosphere, one could use
a linear combination of Eqs. (2.3-27) and (2.3-30) to model the effect of a
discontinuity in temperature or a boundary demarcating a lower regime
containing water vapor. The values of the parameters used in Fig. 2-6(b) are
α −( ) =ro 5 44. mrad , ∆H Hp p/ /= −1 7, r Ro E− = 10 km , Hpo

= 7  km, and

γ = 0 .
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2.3.9 Case C: A Discontinuity in Lapse Rate

Let ∆γ denote a discontinuity in the piecewise constant normalized lapse
rate across the surface r ro= . In this case, the gradient of n r( )  is discontinuous
across this surface, but n r( )  is differentiable at all interior points of the
integration. From Appendix A, Eqs. (A-44) and (A-45), it follows that
Eq. (2.3-20) becomes to first order in ∆γHpo( )
α α

γ α σ σ σ
π

σ σ

α α
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where Kγ  is given by Eq. (2.3-23) (or by Eq. (A-40) for the γ ≠ 0  case), and

σ 2 = −( )r r Ho po* / . Figure 2-6(c) shows the behavior of α α( ) ( )r r− −  near

r ro= . The values of the reference parameters used to obtain this figure are

No = × −70 10 6 , r Ro E− = 10 km , Hpo
= 7  km, γ = 0 , and ∆γ = +1 30/ , or

about a 7 K/km discontinuity in lapse rate.
We note in all three cases that α α( ) ( )* *r r= +  when r ro* > ; also, for

Cases B and C, α( )*r  is continuous across the surface r ro= . It follows for
Cases B and C that the difference in altitudes of the points of tangency of the
two rays about the surface r ro= , which is given by

r r D r r D D Do o* * ˙ ,    LEO GPS
+ − + + − − − −− = ( ) − ( )[ ] = +{ }α α 1 1 1 (2.3-32)

approaches zero. We will see below that when a caustic surface is generated,
one has to be more careful about the definition of the condition r ro* → .

2.4 Multipath Using a Thin Phase Screen Model

We show now some examples of the effect of these discontinuity surfaces
on the relationship between the altitude of the ray path turning point and the
altitude of the LEO–GPS line. Figures 2-7(a) through 2-7(d) show the
relationship between h and hLG , based on the thin-screen relationship given in
Eq. (2.2-5), in the vicinity of the discontinuity at ro  for Cases A, B, and C. The
same parameter values hold here that were used in Fig. 2-6.

Figure 2−7(a), which corresponds to the scenario shown in Fig. 2−2(b),
shows a super-refractivity situation. This results from a hard transition in
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refractivity (infinite gradient) at the boundary, a Case A scenario. Here a
multipath doublet configuration results. The doublet begins at an altitude in
h−space of about 79 m below the boundary (corresponding to the critical
reflection point r̃ ) and continues down to an altitude h( )1 , or about 1.6 km
below the boundary. No rays exist for tangency points lying between the
boundary and 79 m below. Figure 2−7(a) also shows the shadow zone in
hLG -space (~–60.5 ≤ hLG  ≤ ~–49.3 km or, equivalently, 4 to 5 s of elapsed time)
within which no signal at all (according to geometric optics) will be received by
the LEO. Below the first contact point with the caustic in hLG −space, the
altitude difference between the doublet rays grows to well in excess of the
Fresnel diameter.

Figure 2-7(b) uses the same conditions that were used in Fig. 2-7(a) except
that the discontinuity in refractivity has been replaced by a sharp continuous
change over a narrow transition zone just below the boundary. Although the
magnitude of the refractivity gradient is large in this zone, it is bounded so that
the ray existence condition β < 1 holds for all values of the impact parameter.
By softening the discontinuity, one obtains a triplet ray system and two caustics. This
yields a quasi-shadow zone where the highly defocused main ray continues, and
also a triplet ray system between the contact points with the two caustics, one at
h h( ), ( )LG1 1( )  and the other at h h( ), ( )LG2 2( ). The caustic contact points mark the

upper and lower boundaries of the multipath zone.
Figure 2-7(c) shows for Case B the range of ray path altitudes and hLG

values over which three (when ∆Hp < 0 ) mutually interfering ray paths will be

received by the LEO. Contours of constant excess Doppler also are overlaid on
this figure. The excess Doppler value for the dashed contour through the point
at hLG .= −5 78 , h = 10  km, is about 80 Hz. The spacing between contours is
about 100 mHz.

Figure 2-7(d) shows for Case C the range of ray path altitudes and hLG

values over which three mutually interfering ray paths will be received by the
LEO when ∆γ > 0. The point where dh dhLG / = 0 , at a ray path altitude of

h h= ≅− ( ) . km2 9 96  in Fig. 2-7(d), is a singularity point where the vertical
radius of the first Fresnel zone approaches infinity, which is the condition for
the existence of a caustic. For Case C, we see from Fig. 2-7(d) that the altitude
differences between the tangency points of the three mutually interfering ray
paths depend non-linearly on the location of hLG  within the multipath zone
h h hLG LG LG( ) ( )1 2≤ ≤ . These multiple rays arise as a result of an abrupt
downward increase in refractivity or decrease (in magnitude) of its gradient.
Figure 2-7(d) shows that the maximum separation, h ho − − ( )1 , is about 170 m
for a temperature lapse rate discontinuity of +7 K/km at ho = 10 km , which is
small compared to the local mean Fresnel zone but still a significant source of
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interference. The half-width in Doppler space of the local first Fresnel zone is
given by

f h
h

hF F
= ˙ | ( ) |

( )LG

ζ
(2.4-1)

where ˙
LGh  is about 2 5 20. km/ s %± . For the assumed ambient medium at an

altitude of 10 km, fF  is roughly 2 Hz. The maximum separation in ray path

tangency points in Fig. 2-7(d), which is ( h ho( )1 − ), corresponds to a tonal
separation of about 1 Hz, well within the half-width of the first Fresnel zone
and well within the 25−Hz bandwidth of the high sample rate mode in a
TurboRogue GPS flight receiver. Figures 2−7(a) through 2-7(d) also may be
used to obtain the time and Doppler intervals between caustic events. The
abscissa should be multiplied by approximately 5 to yield a Doppler scale in
hertz, and the vertical scale should be divided by approximately 2.5 to obtain a
time scale in seconds. Appendix C provides further details on the separation
geometry at the tangency points of the rays. It also shows the near-quadratic
dependence of the separation scale (and, therefore, the difference in frequency
of the tones in Doppler space) on ∆Hp  for Case B and ∆γ  for Case C. Caustics

produce inherently nonlinear effects, and their existence depends on the
polarities of ∆γ  and ∆Hp .

Because the Doppler spreads in Figs. 2−7(b) and 2-7(c) are small compared
to the Doppler spread of the first Fresnel zone, use of geometric optics to
predict received signal amplitude and phase would be inaccurate. A diffraction
treatment should be used.

When ∆γ < 0 , the left-hand portion of the curve in Fig. 2-7(c) that is less
than h ho= = 10 km  will be flipped about the horizontal axis (at
h hLG LG (1)= = −5 78. ); no caustic occurs and no multipath arises due to this
kind of discontinuity. However, severe defocusing will occur at the boundary; a
quasi-shadow zone results when the refractivity gradient is steep. Appendix C
provides further details and an example of this converse case.

For Case B, no caustic surface is generated when ∆H H h hp p o> =0  at ,

but shadowing may be severe if the gradient is large. Diffraction effects will
soften the shadowing.

We also can estimate the relative intensity (in a geometric optics context)
and the relative phases of the multipath rays observed by the LEO. To obtain
the relative intensity, we use the defocusing function ζ ( )h , which is given by

Eq. (2.2−6). For Case C, for example, ζ ( )
/

h
1 2

 is shown in Figs. 2−8(a) and
2−8 (b) for ∆γ < 0  and ∆γ > 0 , respectively. It should be noted, however, that
the altitude separation of the multipath rays for this value of ∆γ  is well within
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the first Fresnel diameter, and, therefore, the geometric optics approach will
break down. Here ζ ( )h  will not provide a realistic measure of relative
intensities; a wave theory approach is required. Figure 2-8(b) exhibits the
flaring of intensity based on ζ ( )h  in the vicinity of the singularity point where

dh dhLG / → 0 , which marks the onset of a caustic condition. Here ζ 1 2/ → ∞  in
the vicinity of the caustic contact point. The scalar diffraction versions of these
cases are given in Figs. 2−10(c) and 2−10(d). Irrespective of whether or not the
altitudes of the tangency points of the multiple rays lie within the Fresnel zone,
a ray optics approach based on stationary-phase theory to only second order
breaks down at the point of contact with a caustic. A third-order stationary-
phase theory is given in Appendix D.

γ
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The phase difference between multipath rays observed by the LEO is given
by the difference in values of the Fresnel phase function [see Eq. (2.5-1)] for
the two rays. We show later that this is given by

         

∆ Φ Φ= − =

( ) − + −( )





+
−( )



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


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

− +

+ +
− + − +∞ − +

−∫2 1

2
2

3

2
π

λ ζ
α α

λD r
r r D dr

r r

Dr
*

* * *
* *( ) O

*

(2.4-2)

where r R* −  is the altitude of a ray at its point of tangency with the Earth’s
limb. The first term on the RHS of Eq. (2.4-2) results from the increase in path
length due to the additional bending δα. The second term results from the
additional delay through the atmosphere. For cases with a caustic, the observed
phase Φ−  must be further delineated, for example, by Φa  and Φb  and
r ra b
* *and  , to indicate the multipath branch to which one is referring. Again,

geometric optics breaks down for the small values of ∆γ  used in these
examples and also near the point of first contact with the caustic. The actual
observed phase differences will differ significantly from those predicted in
Eq. (2.4-2) because of diffraction effects.

Finally, one can carry out the vector addition of the multipath signals

E i E i E i E ia a b bexp( ) exp exp expΨ Ψ Ψ Ψ= ( ) + ( ) + ( )+ + (2.4-3)

using Eqs. (2.2-6) and (2.4-2) for each ray to obtain a total electric field vector
observed by the LEO as predicted by geometric optics. When the altitude
differences of the tangency points of the multiple signals are significantly larger
than 2F ( )h  and well away from caustics, this approach usually should be
valid.

2.5 Scalar Diffraction: The Rayleigh–Sommerfeld
Integral

To calculate wave theory effects from these perturbations in refractivity on
bending angle, we use scalar diffraction theory applied to a thin-screen phase
profile ϕ( )h , which is defined in Eq. (2.3-16) in terms of the bending-angle
profile. Scalar diffraction theory is derived from the Helmholtz–Kirchoff
integral theorem from classical electrodynamics to relate the amplitude and
phase distributions of an electromagnetic wave over a surface to the amplitude
and phase at a point interior to the surface [3,12]. This theorem is valid when
the wavelength of the wave is small compared to the scale of the radiating
surface. Appendix A presents a version of this surface integral; also, its
contraction to a two-dimensional coplanar geometry is derived there. It



Scattering of Electromagnetic Waves 115

provides the basis for scalar diffraction theory. As was pointed out in
Section 2.3, Eq. (2.3-8), one can use this integral to map the observed
amplitude and phase measurements made by the LEO backwards to an
equivalent set of observations on a surface closer to the Earth’s limb. This is the
basis for the back-plane propagation technique used in radio occultations to
reduce multipath [13–15].

Similarly, the Helmholtz–Kirchoff surface integral also can be used to map
the phase and amplitude forward from an emitting surface to the LEO [4,5].
The forward one-dimensional version of this integral [see Appendix A,
Eq. (A-22)] leads directly to the Rayleigh–Sommerfeld integral for scalar
diffraction. We adopt a thin-screen model to provide the phase and amplitude of
the emitting source in the screen. For the purpose of forward propagating to the
LEO, we use a simple phase screen mounted perpendicular to the LEO–GPS
line. This should work well provided that the perturbation in refractivity does
not violate the uniqueness condition dh da/ > 0 or, equivalently,
1 0+ >a d datan ( / )α α . This ensures a one-to-one relationship between h and
a . We also use in this integral the Fresnel approximation. Here the ray path
length from a height h in the screen to the LEO is given by
l D h h D˙ /LG= + −( )2 2 , (Fig. 2−3). For typical LEO orbits, D h h>> −| |LG , so
this approximation is adequate. For a LEO orbit altitude of 600 km, D is
roughly 3000 km, whereas the range of h h− LG  is only a few tens of kilometers.

Let E hLG( ) and ψ hLG( )  be the normalized amplitude and phase that are
observed by the LEO at an altitude hLG  as a result of the Earth’s intervening
atmosphere. If the Earth’s atmosphere were absent, the amplitude of the signal
at the LEO would be unity and the phase would be kD . Diffraction effects from
the Earth’s opaque limb are ignored here. It can be shown (see Appendix A)
that E hLG( ) and ψ hLG( )  are given through the diffraction integral formulation

by

E h i h
i

ikD
D

h e dhi h h
LG LGexp exp ( ) ,, LG( ) ( )( ) =

+
( ) ( )

−∞

∞

∫ψ
λ

1
1

2
A Φ (2.5-1a)

Φ h h h
D

h h, ˙ ,LG LG( ) = −( )ϕ π
λ

( )+ 2 (2.5-1b)

ϕ α( ) ( ' ) 'h k h dh
h

=
∞

∫ (2.5-1c)

We define Φ h h, LG( )  to be the Fresnel phase function for the screen.

Equation (2.5-1b) shows that it equals the thin-screen phase function ϕ( )h  plus
the extra geometric delay from the bending angle, k l D( )− . For a transparent
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phase screen, A ≡ 1. In actuality, the integration limits in this integral are finite,
but one can for convenience set these limits to infinity. If one is interested in
edge phenomena, such as knife-edge diffraction effects from the Earth’s limb,
one can set A = 0  below a certain altitude. We will show using the stationary-
phase technique that, when the stationary-phase points are located well away
from questionable boundaries, the resulting error from using infinite integration
limits is negligible because the significant contributions to the integral come
only from neighborhoods where the phase is stationary, or nearly so.

As a check, let us set ϕ( )h ≡ 0  and A ≡ 1. Then the Fresnel phase function
becomes simply the extra geometric phase delay from any point in the screen to
the LEO, Φ ˙ /LG= −( )π λh h D2 . The integral in Eq. (2.5-1) reduces to a

complete complex Fresnel integral with a value of ( )( / ) /1 2 1 2+ i Dλ . Thus,
E hLG( ) = 1 and ψ h kDLG( ) = , as predicted.

There are alternative methods for evaluating the convolution integral in
Eq. (2.5-1). One approach much favored prior to the advent of modern
computers was the saddle-point method. Here we discuss the stationary-phase
technique, which expresses the results in terms of Fresnel integrals. However,
the stationary-phase technique as a computational technique is limited to a few
ideal situations with isolated stationary-phase points. When complexities of a
real atmosphere are introduced, this approach becomes cumbersome. Even
handling caustics becomes a problem unless a higher-order Taylor series
expansion is used in Eq. (2.5-1). The technique does provide some insights,
however, and also asymptotic forms that are useful in determining the limiting
value of a numerical integration. It is in that spirit that the discussion in the
following section is presented.

2.6 The Stationary-Phase Technique

The stationary-phase technique uses the fact that the principal contributions
to an integral with a rapidly oscillating kernel come from those neighborhoods
where it has the least change. Traditionally the technique mainly has been
applied to neighborhoods around well-isolated stationary-phase points or near
end points associated with a boundary of some sort. In this technique, the
integral in Eq. (2.5-1a) is evaluated in terms of a Fresnel integral by expanding
Φ h h, LG( )  in a Taylor series in h about the thin-screen altitude h h h= *( )LG

providing the least change in Φ h h, LG( )  with h, while retaining only terms up to
the second degree. This technique fails in the case of multiple stationary points
when they are not sufficiently isolated to ensure adequate phase windup in the
neighborhood between them. It also fails when the expansion of the Fresnel
phase to only the quadratic term is insufficient, for example, when the quadratic
term is zero or near zero, which occurs near a caustic. A third-order treatment is
needed for caustics.
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We show an example where the technique is sound. In this case, we assume
that there is a single stationary-phase point, well away from any boundaries that
the geometry might include. If we expand the Fresnel phase Φ h h, LG( )  in

Eq. (2.5-1a) in a Taylor series, we obtain

      

Φ Φ Φ Φ

Φ

Φ Φ

h h h h
h

h h
h

h h

h h k h dh
D

h h

h
k

D
h h h

h h

h

h

, , ,

, ( ' ) ' ,

( ) ,    

LG LG
* *

LG * LG

*
LG

* * *

* *

*

( ) = ( ) + −( ) + −( ) + ⋅⋅⋅

( ) = + −( )

= −( ) −





∞

∫

∂
∂

∂
∂

α π
λ

∂
∂

α ∂

1
2

1

2

2

2

2

2

∂∂
π

λ
α

h D
D

d

dh
h

2 1
*

*

= −




















(2.6-1)

Now we set h h D h* *
LG= + ( )α  to null the first-order term. This condition is

identical with the thin-screen relationship in Eq. (2.2-5). Then the diffraction
integral in Eq. (2.5-1) becomes

E h e e
i D

e dh
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Here ζ  is the defocusing function [Eq. (2.2-6)] evaluated at the stationary-

phase altitude h*. We assume that it is positive in this example, but on
anomalous rays ζ < 0 . Now we make a change of integration variable

v D h h= −( )( / ) / *2 1 2λ ζ  to obtain

  

E h e e
i

e dv e

kD h h kD h k h dh

h h D h

i h i kD h h i i kD h h

h

LG

* *

LG *

LG

( ) , ,

* *

* *

˙ ,

, ( ) ,

LG LG( ) =
+

=

+ ( ) = + ( )



 +

= + ( )










+ ( )( )
−∞

∞ + ( )( )

∞

∫

∫

ψ
π ν

ζ ζ

α α

α

LG
Φ Φ

Φ

1
1

1
1
2

2

2

2





(2.6-3)

Implicit in the integration here is that the infinite limits on the integral are valid.
Otherwise, an incomplete Fresnel integral would result, yielding diffraction
fringes. Moreover, we have assumed here that h*, the stationary value for h, is
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unique. In the Fresnel phase expression, the term D D1 22+( ) =α α/ ˙ sec  is the
slant range from the LEO to the stationary-phase point in the thin screen. The
second term, the integral term, is the total refractivity-induced phase delay, that
is, it is the extra phase delay incurred by the ray after passing completely
through the refracting atmosphere. We note the defocusing term ζ1 2/  in the
amplitude term in Eq. (2.6-3), in accordance with geometric optics.

Neither of the integration assumptions used to obtain Eq. (2.6-3) is likely to
hold when refractive boundaries have to be considered, such as one of the
scenarios described by Cases A, B, or C. We need to develop the perturbation
to the nominal thin-screen phase-delay profile that results from a discontinuity
on the surface r ro= . For a ray descending through the + regime of the
atmosphere, the nominal phase delay in the thin-screen model is taken to be that
corresponding to the bending-angle profile α + ( )r , which is given by
Eq. (2.3-18) (see also Appendix A). Because the turning point of this ray is
above the boundary, it is unfettered by the effects of the discontinuity below.
The thin-screen phase function may be broken into two parts:

ϕ
ϕ
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h h h

h h h h
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(2.6-4)

where ϕRef ( )h  is the reference thin-screen phase function derived from the
integral in Eq. (2.3-16) in terms of the reference form for the bending angle for
α + ( )*r , nominally that given in Eq. (2.3-18). Similarly, the perturbed thin-
screen phase function δϕ( )h  is obtained from Eq. (2.3-16) and the form for the
perturbed bending angle, for example, Eq. (2.3-31) for Case C. Thus,
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δα
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(2.6-5)

Here h n r r R= −( ) sec* * α . The quantity δα α α( ) ( ) ( )* *h r r= − +  is the
perturbation in refractive bending angle. Thus, there is a break in the diffraction
integral in Eq. (2.5-1). We can use any one of Eqs. (2.3-27), (2.3-30), or
(2.3-31) combined with the appropriate expression for α α− +−( ) ( )* *r r  to
develop explicit expressions for δα( )r δϕ( )h  and for δϕ( )h , which then can be
used with ϕRef ( )h  in the diffraction integral to calculate the LEO-observed
phase and amplitude perturbations. Appendix A gives explicit forms for δϕ( )h
for the different discontinuity scenarios discussed here. Here h denotes a height
in the thin screen, but r* denotes a geocentric radial position in the atmosphere
of the ray path tangency point with the Earth’s limb. Also, r R* −  denotes the
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height in the atmosphere of the tangency point; h is essentially equal to
r n r R* *( )secα − , as has already been discussed.

As the point of tangency of the ray traversing the atmosphere approaches
the boundary, a perturbation in phase is observed by the LEO because of the
discontinuity. This results from changes in both the atmospheric delay and the
refractive bending angle. Figures 2−9(a) through 2−9(c) show the Fresnel phase
function Φ h h, LG( )  versus h and the incomplete diffraction integral

exp ' , ' / ( )LG
/i h h dh D

h
Φ( )[ ]∞

∫ λ 1 2  for three different hLG  values. A Case C

scenario has been used. These figures should be compared to the thin-screen
Case C scenario shown in Fig. 2−7(d), except that there the discontinuity in
lapse rate is 1/7 the magnitude used to generate Figs. 2−9(a) through 2-9(c). The
integral is obtained from a numerical integration. The phasor exp , LGi h hΦ( )[ ] in

this integral rapidly oscillates except near stationary-phase points. Therefore,
care must be exercised in evaluating the limiting value of the integral.
Figures 2-9(a) and 2-9(b) show two cases where hLG  lies outside of the
multipath zone; in Fig. 2-9(a) hLG  is well above the zone, and in Fig. 2-9(b) it is
just below. In Fig. 2-9(c), hLG  lies in the multipah zone, that is, where
h h hLG LG LG( ) ( )1 2< < . Here hLG ( )1  and hLG ( )2  mark the lower and upper
boundaries of the multipath zone, respectively. From Fig. 2-7(d), it follows that
the lower limit, hLG ( )1 , is independent of the magnitude of the discontinuity,
such as ∆γ , and depends only on the altitude of the discontinuity and the

nominal value of α + ( )ro . However, hLG ( )2  corresponds to a nominal ray path
altitude above ho  (when ∆γ > 0 ); that is, it is the altitude of tangency point for
the main ray [the m ray in Fig. 2−2(a)]. It depends on the magnitude of the
discontinuity.

When hLG  does not lie within a multipath zone, as shown in Figs. 2-9(a)
and 2-9(b), and the convexity of the Fresnel phase function Φ h h, LG( )  is such

that it rapidly increases as h moves away from its stationary-phase value, then
the stationary-phase approximation for the diffraction integral may be accurate.
This would hold for Fig. 2-9(a), even though there are reversals in polarity of
the convexity of Φ h h, LG( )  (around h = 10 km ), because ∂ ∂Φ h >> 0  in that
neighborhood. There is a unique and isolated stationary-phase point.

However, when the convexity of Φ h h, LG( )  not only reverses sign but also

induces a significant slowdown in the growth rate of Φ h h, LG( )  to near zero,

which is shown in Fig. 2-9(b) (around h = 10 km ), care in using the stationary-
phase approximation must be exercised. This figure typifies the case where a
quasi-stationary-phase altitude makes a small but significant contribution to the
overall integral in Eq. (2.5-1), which affects both the amplitude and phase of
the observed signal. A geometric optics approach to situations like this would
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be compromised even though there is a unique stationary-phase altitude for the
example in Fig. 2-9(b) (at about 7.4 km).

Finally, Fig. 2-9(c) shows Φ h h, LG( )  when hLG  falls within the multipath

zone between the two caustic contact points, which results in a triplet of
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Fig. 2-9.  Pairs of figures showing Fresnel phase Φ (left) and the incomplete
scalar diffraction integral I (h,hLG) (right) for three different fixed altitudes of the
LEO–GPS line hLG.  A Case C discontinuity in lapse rate at 10 km has been

used with ∆     = +7/30.  In (a),  hLG lies well above the upper boundary of the mul-
tipath zone at hLG(2), (b) hLG lies below the lower boundary at hLG(1) but near it,
and (c) hLG lies in the multipath zone.
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stationary-phase points. Here the stationary-phase approximation is likely to be
seriously compromised. Multipath rays with narrow separations at their
tangency points comparable to or smaller than the radius of the first Fresnel
zone are difficult for the stationary-phase approximation. This is because the
technique in these circumstances tends to yield a biased phase error in the
individual E vector computation for each stationary-phase point, i.e., each ray,
which can significantly alter the resultant E vector after vector addition of the
contributions from the multiple ray segments. Near a caustic contact point at

h h†,
LG

†( ) , Φ h h, LG( )  must be expanded in a power series in h h−( )†  that

includes third-order terms to obtain sufficient accuracy.
Similarly, regarding Fig. 2−9, geometric optics should be accurate for

situations depicted by Fig. 2−9(a), less accurate for Fig. 2−9(b), and inadequate
for Fig. 2−9(c) because of co-mingling of the stationary-phase contributions
from overlapping neighborhoods in impact parameter.

One can generalize Fig. 2−9(c) to situations where Φ h h, LG( )  supports
multiple multipath zones. It should be clear that for n multipath zones one
generally will have up to 2n + 1 stationary-phase points, i.e., 2n + 1 rays, and
also at least n + 1 caustics. Whenever a situation arises where the stationary-
phase technique degrades in accuracy, so also will geometric optics as an
approximate second-order description of electromagnetic wave processes. It
should be pointed out, however, that in multipath situations where the
separation altitudes between the tangency points of the rays are large compared
to their respective first Fresnel zones, then a geometric optics approach can be
sound. However, in the vector addition of these multiple rays to compute the
complete field vector, their relative phases must be maintained with high
accuracy.

2.6.1 Necessary Conditions for Validity of the Geometric Optics
Approach

Let h h ha b c,  ,  and  denote successive ray path altitudes at which the
Fresnel phase has stationary values for a given value of the LEO–GPS straight
line altitude above the Earth’s limb, hLG  (see Fig. 2−3). Then necessary
conditions for ensuring accuracy of the stationary-phase approximation
technique with multiple stationary-phase points would be

Φ Φ Φ Φh h h h h h h ha b b c, () , ,   , ,LG LG LG LG( ) − ( ) >> ( ) − ( ) >> }π π (2.6-6)

These conditions are tantamount to requiring the altitudes of the stationary-
phase points to be separated by a distance much greater than the first Fresnel
zone. However, for cases with a single stationary-phase point, as demonstrated
by Fig. 2−9(b), or even for multiple stationary-phase points where the
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conditions in Eq. (2.5-8) hold, we also must ensure that Φ h h, LG( )  has no near-

stationary points elsewhere. A strong condition would require that there be no
polarity changes in the convexity of Φ h h, LG( )  over the h−space. A somewhat

relaxed condition would require that ∂ ∂Φ h >> 0  within any neighborhood
bounded by reversals in polarity of the convexity of Φ h h, LG( ) . Appendix D,
which is principally concerned with third-order stationary-phase theory to deal
with caustics, provides a more explicit bound on ∂ ∂Φ h  for zero convexity
points that are isolated ( ∆Φ >> π ) from end points and stationary-phase points.

2.7 Numerical Results Using Thin-Screen/Scalar
Diffraction

Figures 2−10 and 2−11 show for several discontinuities, both positive and
negative, the resulting phase and amplitude perturbations, ψ hLG( )  and E hLG( ).
We refer to these as “Fresnel effects,” but in fact they are a combination of both
diffraction and interference. Away from caustic rays and deep shadow zones,
the interference in amplitude and phase is largely predictable by complex
addition of the rays from geometric optics. These figures are based on a
numerical integration of Eq. (2.5-1). Figure 2−10 shows a Case C scenario, a
lapse rate discontinuity. Figure 2−11 shows a Case A scenario, a discontinuity
in N . In both the figures, the exponential refractivity model given in
Eq. (2.3-17) was used to generate the reference phase profile for the Fresnel
phase function given in Eq. (2.5-1) for the thin screen. The perturbed Fresnel
phase was obtained from Eq. (2.6-5) using the perturbed bending-angle profile
given in Eq. (2.3-27) for Case A and Eq. (2.3-31) for Case C. To simplify the
calculations, the atmospheric altitude difference r ro* −  was replaced directly by
the thin-screen altitude difference h ho−  without converting to the impact
parameter value.

These numerical integrations were aided by the stationary-phase technique,
which was used to isolate the neighborhoods in h-space that contribute to the
integral. Numerical integration is aided by using the asymptotic forms for the
incomplete Fresnel integrals, which these diffraction integrals assume in their
limit. These asymptotic forms also provide the characteristic wavelengths and
magnitudes of the asymptotic modulations in signal phase and amplitude. The
asymptotic expansions for the Fresnel integrals can be written in the form

exp ( ) ( ) expi y dy
i

g x if x i x
x π π

2
1

2 2
2

0

2



 = + − +( ) 



∫ (2.7-1)
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where f x( ) and g x( )  are given by

f x
x x

g x
x x

(   ) ,   ( )= − + = − + 



1 3 1 5
3 5 2 3 4 7π π π π

L L (2.7-2)

By fitting the free parameters (scale factor and mean) associated with these
functions in Eq. (2.7-1) to the numerical integration of the diffraction integral in
its asymptotic regime, one can calculate the limiting value of the integral
without actually numerical integrating to the limit, thereby reducing
computations.
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Fig. 2-10.  Fresnel perturbations in received signal due to a discontinuity ∆γ = ±1/30 in
lapse rate at an altitude of 10 km.  The phase variations are shown in millimeters for
(a) ∆γ = 1/30 > 0 and (b) ∆γ < 0.  The geometric optics terms for the reference and per-
turbed phase have been removed to stop phase windup.  The amplitude variations are
shown for (c) ∆γ = 1/30 > 0 and (d) ∆γ < 0.
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Fig. 2-11 (cont'd.).

2.7.1 Fresnel Response to a Discontinuity in Lapse Rate

Figures 2−10(a) through 2−10(d) show the Fresnel effects in phase and
amplitude. The abscissa hLG  has the favorable property of varying nearly
linearly with time during an occultation (within ±0 5. %  for the spans in these
figures). The equivalent elapsed time in these figures is 5 to 7 s. The ray path
altitude in Fig. 2−10 ranges from ~6 km to ~12 km and its scale, if shown,
would be non-linear, and it would be compressed by defocusing compared to
the hLG  scale. The defocusing here is about 1/3. The corresponding altitudes of
the points of tangency in the actual atmosphere would be 400 to 500 m lower
(essentially ( )n ro−1  lower). The boundary marking the discontinuity in lapse
rate, at a thin-screen altitude ho  of 10 km above sea level, is crossed when the
altitude of the LEO–GPS straight line reaches the altitude
h hLG LG ( )= =1 −5.78 km. The dry air exponential refractivity model was used to
generate the reference bending angle from Eq. (2.3-17) and the reference phase
delay; it yields at ho = 10 km  a reference bending angle of 5.44 mrad. The
pressure scale height is 7 km, and the temperature is 210 K. At a LEO orbital
altitude of 700 km, the limb distance is D = 3000 km . The principal Fresnel
effects in phase and amplitude are completed within a time interval of 2 to 3 s.

The LEO-observed phase delay from the geometric optics phase delay
(including the perturbed part below the boundary) has been suppressed in
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Figs. 2-10(a) and 2-10(b) to stop the phase windup. This leaves only the Fresnel
effects. For ray path altitudes below ho , the question arises when a caustic is
present (whenever ∆γ > 0 ) as to which of the new rays should be used for

phase-stopping. The geometric optics phase delay offset ∆−  from the phase
delay of the main ray (m), or + ray, is shown versus hLG  in Fig. 2−12. This is
the difference in phase of a– regime ray at the LEO relative to the phase of the
+ regime ray that either exists for h hLG LG ( )≥ 1  or would exist if the + regime

were continued below the discontinuity. Figure 2−12 shows the phase offset ∆−

for the two rays in the multipath zone: the anomalous a ray and the branching
b ray. The quantity ∆a  gives the phase offset for the a ray. This corresponds to
the a ray in Fig. 2−2(a), which as a function of hLG  begins at the cusp at an
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Fig. 2-12.  LEO phase delay offsets from the main ray for Case C:
(a) ∆γ = 1/30 and (b) ∆γ = 2/30.  Phase offsets are for the ordinary
branching ray, b, and also for the anomalous ray, a.  Cusp marks
the contact point with the caustic and its offset scales roughly as
(Hpo

∆γ)4. Delay is in range units for L1.
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altitude of h ha
LG ( )2[ ] and terminates at the higher altitude h h ho

a= [ ]LG ( )1 . This

point h h ho
a= [ ]LG ( )1  also marks the termination of the lower descent of the +

ray. ∆b gives the phase offset for the b ray. It continues downward indefinitely
into the – regime. The phase from the b ray has been applied in Fig. 2−10 to
stop the phase windup. Consequently, there is a discontinuity in phase in
Figs. 2-10(a) and 2-10(b) at h hLG LG ( )= 2 . The magnitude of the discontinuity is
about 1.6 mm for ∆γ = +1 30/  and about 20 mm for ∆γ = +2 30/ .

Figures 2−10(a) and 2−10(c) show the Fresnel response for ∆γ = >1 30 0/ .

The flaring in amplitude in Fig. 2-10(a) at hLG km≅ −6  and h+ ≅ 9 8. km
corresponds to the first contact with the caustic surface. In a descending
occultation, the + ray at the altitude h h+[ ]LG ( )2 , which is above ho , abruptly
splits into three rays, two of which, the a and b rays in the – regime, arrive at
the LEO essentially mutually in phase initially from an altitude slightly below
ho  ( h h ho

−[ ] − ≈ −LG ( ) m2 40 ). The third, the + ray, which is the main ray or the
m ray in Fig. 2− 2, arrives from the original altitude above ho ,

( h h ho
+[ ] − ≈ +LG ( ) m2 50 ) with an initial phase offset from the other two that is

given by the cusp offset in Fig. 2−12(a).
The cusps in Fig. 2−12 mark the initial contact with the caustic surface for a

descending occultation and also the point of nascence of the a and b rays. The
altitude of the ray at the cusp is determined in terms of the Fresnel function
Φ h h, LG( )  by the conditions that both ∂ ∂Φ / h  and ∂ ∂2 2Φ / h  are zero there. The

magnitude of the initial phase offset at the cusp is very sensitive to ∆γ . It can
be shown from Appendix C that this phase offset generated by a discontinuous
lapse rate can be evaluated in terms of a power series in ∆γHpo

 and that the

leading term is ∆γHpo( )4 . The relative magnitude of the flaring at the caustic

contact point will depend on how flat the Fresnel phase function is in that
neighborhood. This is discussed further in Appendix D.

If the phase offset at the cusp from the phase of the + ray approaches a
radian, as is nearly the case for Fig. 2−12(b) (which corresponds to an
unrealistically large lapse rate discontinuity of +14K/km), then a tracking-loop-
driven GPS receiver would begin to encounter difficulty in such a
neighborhood. The concomitant flaring at the caustic contact would likely lure
the receiver to begin tracking one or the other of the nascent rays, a or b, there.
These figures (Figs. 2-10(a), 2-10(b), and 2-12) also suggest that significant
Fresnel ringing in phase and amplitude will persist well below the site of the
discontinuity but that only faint Fresnel perturbations are evident for ray path
altitudes higher than a Fresnel radius above the discontinuity when ∆γ > 0 .
Asymptotic Fresnel effects typically attenuate slowly in their continuation past
a discontinuity.
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A lapse rate change of ∆γ = +2 30/  is too large for the tropopause and also
one does not find a strict discontinuity there. Moreover, the tracking statistics
through the tropopause from more recent LEOs is good. On the other hand,
sharp changes in refractive gradient due to a water vapor layer in the lower
troposphere or due to sharp electron density changes in the lower ionosphere
(for example, across the boundary of a sporadic E-layer) can and do cause
tracking difficulty for grazing ray paths. Multipath and diffraction effects for
these situations can be quite severe, as they are extremely sensitive to the
magnitude of the change in refractive gradient. The severity of the Fresnel
phase perturbations in the vicinity of a discontinuity in scale height is, as in
Case C, very sensitive to the magnitude of ∆Hpo

, roughly the phase

perturbations scale as ( )∆Hpo

4 . Moreover, from Figs. 2−6(b) and 2-6(c) and

from Appendix C, one concludes that the profile of δα( )r  for Case B will be
similar to that for Case C when ∆ ∆H H Hp p po o o

/ ≈ − γ . For example, it is

shown from Appendix A that a value ∆ ∆H H H H Hp p p po o o o o
/ ( )( / )= − γ ρ

2

gives for Cases B and C the same value for the discontinuity in the refractive
gradient at ro ; only the subsequent bending-angle profiles differ, but only
slightly. When this correspondence between ∆Hpo

 and ∆γ  holds, one would

expect to see Fresnel perturbations for Case B that are similar to those for
Case C.

Figures 2−10(b) and 2-10(d) show examples of Fresnel effects when
∆γ < 0 . Here the caustic-induced flaring is absent. The Fresnel effects are
smaller and their onset is lowered in altitude to ho . Also, the severe darkening
at h ho=  predicted by Eq. (2.2−6) and shown in Fig. 2−8(a) is very prominent
but modulated by diffraction.

2.7.2 Fresnel Response to a Discontinuity in Refractivity

Figure 2−11 shows the thin-screen/scalar diffraction prediction for a
discontinuity in N  itself at r ro= , a Case A scenario. Here ro  corresponds to a
lower troposphere altitude of about 1/2 scale height above the Earth’s surface.
The discontinuities are ∆N No o/ .= ±0 05  and ∆N No o/ .= ±0 005. The same
exponential refractivity model given in Eq. (2.3−17) is used here for the
reference bending angle and Fresnel phase function with No = 0 0002.  and
H = 7 km . The dashed curves in these figures are the defocusing from the
bending-angle profile for the exponential reference refractivity based on
geometric optics. The amplitude of the incident wave just before encountering
the atmosphere is normalized to unity.

Figures 2-11(a) and 2-11(b) show the Fresnel response in amplitude to a
negative discontinuous change ∆N N N= − <+ − 0 . These can provide limiting
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forms for the amplitude perturbations experienced by a ray encountering from
above a sharp water vapor layer at an altitude of about 4 km. A 5 percent
discontinuity in refractivity for these physical conditions corresponds roughly
to only a 10 to 20 percent change in water vapor density. In Appendix C, the
sensitivity of the corresponding Doppler spread between multiple rays to the
magnitude of ∆N No o/  for ∆No < 0  is discussed (see Fig. C−1).

Figures 2-11(c) and 2-11(d), which show the Fresnel response to a positive
discontinuity in N , provide examples of what might be observed as the
tangency point of the ray drops below the bottom of such a water vapor layer
and enters a regime of drier and speedier air. This corresponds to the ray
diagram in Fig. 2−2(a).

A relatively small negative change in refractivity, 5 percent for
Fig. 2-11(a), leads to a very deep shadow zone lasting roughly 4 s. In
Appendix C, it is shown that the shadow zone duration is closely proportional
to ( ) /−∆N 1 3 . Thus, even very small negative discontinuities can result in
significant shadow zones. In Fig. 2-11(b), the magnitude of ∆N  is a factor of
ten smaller than that used in Fig. 2-11 (a).

On the other hand, a relatively small positive ∆N  results in significant
interference well above the boundary. It is shown in Appendix C that the
duration of the multipath region for a positive discontinuity is closely
proportional to ( ) /∆N 1 2 . Therefore, the maximum altitude separation of the rays
and also the Doppler spread for a positive discontinuity is approximately
proportional to ( ) /∆N 1 2 .

The super-refractivity condition from a discontinuity in N  creates errors in
our thin-screen/scalar diffraction prediction for observed phase. The phase,
unlike the amplitude, is extremely sensitive to model approximations. The
uniqueness condition, 1 0+ >a d datan ( / )α α , is effectively violated across the
discontinuity in the bending angle (the Snell term). Chapter 3, which uses Mie
scattering theory to predict phase and amplitude at the LEO, also compares
those wave theory results with the thin-screen results for similar values of ∆N
(see Figs. 3−23 through 3−26).

One example of the phase perturbations from a discontinuity in N  is shown
in Figs. 2−11(e) and 2−11(f) in order to point out that the phase effects across a
discontinuity depend strongly on the polarity of ∆N . This also is borne out in
the Mie scattering treatment in Chapter 3. In Figs. 2−11(e) and 2−11(f), the
phase windup has been stopped by subtracting from the predicted phase
observed at the LEO the geometric optics phase applicable to each regime, the
“+” and “–” regimes, as already explained earlier for Fig. 2−10. In Fig. 2-11(e),
where ∆N N/ .= −0 05 , we have subtracted the geometric optics phase profile
using the reference bending angle model at all altitudes, including across the
shadow zone. However, no rays exist in the shadow zone [see Fig. 2−7(a)]
because of the discontinuity in refractivity. For Fig. 2-11(e), the shadow zone is
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defined by h h hLG LG LG( ) ( )2 1≤ ≤ ; hLG ( ) . km2 60 5≈ − , and hLG ( ) . km1 49 3≈ − , a
temporal separation of 3 to 4 s. The shadow zone marks a transition region
where the Fresnel phase migrates from the reference Fresnel phase profile in
the + regime to the perturbed Fresnel phase profile in the − regime. The latter
involves (in a geometric optics context) the weighted (by their respective
defocusing factors) vector addition of the phase contributions from both the
b and a rays. The point hLG ( ) . km2 60 5≈ −  marks first contact with the caustic.
Below this point, we have subtracted the phase from the branching ray b.
Therefore, across this transition region we see cycle slipping relative to the
prediction provided by the reference Fresnel phase profile, which here is the
extrapolated reference profile from the main ray that would apply in the shadow
zone without the discontinuity. The cycle slip essentially equals the difference
between the phase of the nascent rays at the caustic contact point at the end of
the shadow zone at h hLG LG ( )= 2 , minus the phase of the main ray extended to
that caustic point, even though the main ray doesn’t exist there. For the
example in Fig. 2-11(e), this amounts to about 10 cycles. For the opposite
polarity of the same magnitude, i.e., ∆N N/ .= +0 05  shown in Fig. 2-11(f),
which involves a positive ∆N  of the same magnitude, the cycle slip is an order
of magnitude smaller.

The ramification of this for a statistical net loss of cycles by a receiver
attempting to track a GPS signal that passes through a series of sharp positive
and negative transitions in refractivity should be noted. A GPS receiver with an
ordinary low-gain antenna is likely to have more difficulty tracking through a
deep trough in the shadow zone because of poorer signal-to-noise ratio (SNR),
as shown in Fig. 2−11(a), than it would in a strong (but messy) signal condition,
as shown in Fig. 2−11(c). Note from Figs. 2−11(e) and Fig. 2−11(f) the
difference in the rate of unaccounted-for phase windup between these positive
and negative ∆N  scenarios. Statistically this could result in a net loss of cycles
incurred by the receiver in attempting to track the phase during successive
episodes of sharp transitions of positive and negative ∆N . A net loss of cycles
leads to an underestimate of N .

The frequency spectrum of the fringes in Fig. 2−11(e) is biased significantly
higher than that for Fig. 2−11(f), even though the magnitude of the discontinuity
in refractivity is the same in the two sets of figures. This is because of the on-
average wider separation of the multipath tones when ∆N > 0  (see Appendix C,
Fig. C−2). The multipath separation altitudes in the panels for ∆N > 0  are
sufficiently wide compared to the vertical width of the first Fresnel zone that a
geometric optics approach to construct these figures using Eqs. (2.2−5), (2.2−6),
and (2.4−1) should be fairly accurate. Also, no caustics occur in the
neighborhood about these altitudes in this case. Use of geometric optics is, of
course, much easier when corrections for diffraction can be neglected. On the
other hand, for the ∆N < 0  case shown in Figs. 2−11(a) and 2−11(b), the dire
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predictions of geometric optics of infinite signal power at the contact point with
the caustic surface and zero power in the shadow zone are far from accurate.
Ray theory based upon second-order theory fails in these regions, or at least it
is compromised. In the former region, it fails because dh dhLG / → 0  at the

caustic contact point and, therefore, ∂ ∂2 2 0Φ h h h, /LG( ) =  at that point,
rendering the quadratic form of the stationary-phase technique useless. In the
latter region, it fails because ∂ ∂Φ h h h, /LG( ) ≠ 0  at any altitude; there are no

stationary-phase points there. The scalar diffraction integral does a good job
with these two situations.

2.7.3 A Boundary Layer

An example of a two-sided boundary is shown in Figs. 2−13(a) through
2-13(d). This example might be found in a marine layer in the lower
troposphere with very sharp boundaries. Here the refractivity, shown in
Fig. 2−13(a), abruptly within 50 m rises by 5 percent over a very short range
compared to the first Fresnel zone from the dry air reference refractivity profile
used in Fig. 2−11. For this transition, r n no o o′ + = −0 2. ; therefore, ′no  exceeds

the super-refractivity limit of − ≈ − −n ro o/ / km1 6400 1. Then at an altitude of
1/2 kilometer lower, the refractivity abruptly drops by 5 percent. The bending-
angle profile for this example is shown in Fig. 2−13(b). It is obtained from
Eq. (2.2−2), taking care to avoid integrating across a very narrow super-
refractivity interval near the upper boundary where nr a* < . Figure 2-13(c)
shows the h h, LG( )  relationship using the thin-screen model. In this figure, the

curve for hLG  versus h from the reference refractivity profile is dashed below
the upper boundary. Figure 2-13(d) shows the Fresnel response in amplitude for
this model. The dashed curve in this figure is the defocusing from the dry air
reference refractivity profile. Qualitatively, this figure is largely a composite of
Figs. 2−11(a) and 2−11(c). The shadow zone due to the strong refractivity
gradient over the transition at the upper boundary (where dN dh/ < 0 ) is
largely filled in by the “throw-back” rays from the reverse transition
( / )dN dh > 0  at the lower boundary. It goes almost without saying that the
refractivity transitions across boundary layers in the real atmosphere can and do
produce very complicated interference/diffraction patterns in amplitude and
phase, such as those shown in Figs. 1−3 and 1−8.

Higher SNR will be called for in future missions if the fine structure in the
narrow refracting layers is to be fully studied to their sub-Fresnel resolution
limit. This means, for example, the use of an antenna array that is effectively
several decimeters in size along the vertical dimension, in-phase and quadrature
dual-band coarse acquisition (C/A) recovery of carrier phase, and so on. Sample
rates somewhat higher than the canonical 50-Hz GPS data transmission chip
rate may prove beneficial.
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2.8 Sensing a Boundary in the Ionosphere

In the ionosphere, the plasma frequency is typically about 3 MHz. Hence, the
ionosphere, except on occasions of severe storms resulting in deep scintillation,
is essentially transparent for radio signals at L−band frequencies, with typical
lower ionosphere refractivity in the 10 105 6− −−  range. On the other hand, the
Doppler and SNR signatures in observed GPS signals that traverse the
ionosphere at grazing angles can reflect a high degree of spatial and temporal
variability in electron density. An example is provided in Fig. 2−14 [19], which
shows the vertical profiles of the L1 and L2 bending angles obtained from
GPS/MET for a particular occultation on April 24, 1995. As the tangency
points of the two rays descend through the lower ionosphere (~50 to 250 km)
during this occultation, sharp changes in the vertical gradient of the electron
density in this neighborhood can be inferred. Around 100 km these profiles
reveal a layer with near-discontinuities in electron density across their upper
and lower boundaries. Figure 1−3 also shows a sharp transient in SNRV for this
same occultation around 100-km altitude.

The GPS/MET observations for certain occultation profiles show a near
blackout or fadeout in SNR in the GPS signal when the point of tangency of the
ray at the Earth’s limb drops through this kind of boundary in the ionosphere.
Figure 2−15 [23] captures in fine detail an example of this fading (associated
with a sporadic E-layer) in the same occultation taken on April 25, 1995. It
charts at a 50−Hz sample rate the variation of the voltage signal-to-noise ratio
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Fig. 2-14.  Example of GPS/MET-observed bending angle profiles for
the L1 and L2 signals, and also the "ionosphere-free" profile.
Redrawn from [18].
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SNRv, rated 1-s average,4 for the L1 and L2 carriers over a 10−s time interval;
the variability in the two SNRv profiles is highly correlated, reflecting true
variability in electron density. This figure also shows the change in the
difference of the observed L1 and L2 carrier phase [L1–L2] with time (each
carrier phase in nanosecond units).

In Fig. 2−16, the excess Doppler for the L1 and L2 carriers for this
occultation is shown at 50−Hz and 5−Hz sample rates [24]. The latter is
obtained by applying a sliding box filter of 200-ms width to the 50−Hz series. A
value of 100 for SNRv corresponds to a thermal noise in an individual L1 phase
measurement over a 20-ms average of about 2 mm. The thermal noise on most
50−Hz Doppler points in Fig. 2−16 is about 0.7 Hz on L1 and 1.0 Hz on L2.
Below SNRV ≅ 30  the receiver is increasingly likely to encounter difficulty
tracking the phase, particularly when significant phase accelerations are also
present. On this particular occasion, the receiver maintained lock.

                                                            
4 Here SNRV is expressed as the ratio of the signal amplitude to noise amplitude in
voltage that would be obtained by averaging over 1 s, even though the actual averaging
time in Figs. 2-15 and 2-16 is 20 ms, the reciprocal of the sample rate.
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Fig. 2-15.  Signal amplitude profiles over a 10-s interval for the L1
and L2 carriers observed by GPS/MET for an occultation on April
25, 1995, sampled at 50 Hz.  Amplitude is voltage signal-to-noise
ratio SNRv at 1 s.  The phase difference of the L1 and L2 carriers is
in nanoseconds.  The 100-km altitude of the transient indicates the
crossing of a sporadic E-layer.  Redrawn from [23].
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The Doppler change is greater for L2 after crossing the “boundary” at
approximately t = 5 7.  s. The dip in Doppler just prior to impacting the
boundary indicates a negative radial gradient in the electron density transient
above the boundary. The abrupt rise in Doppler just afterwards indicates a large
positive gradient below.

The precipitous fade and recovery of SNRv in Fig. 2−15 and the abrupt
change in slope of [L1–L2], all occurring within about 1/3 s about coordinated
Universal time (UTC) = 00:09:22.7, mark a lower boundary of an ionospheric
layer of higher electron density. For this occultation, a very abrupt roll-off of
electron density occurs with descending altitude. The scenario shown in
Fig. 2−2(c) best matches this situation.

The measured SNRv and Doppler profiles on L1 and L2 each provide a
number of key quantities: the change in Doppler across the fadeout zone (and
hence the change in bending angle), the epoch of onset (and hence altitude from
POD information and ray tracing) of the fadeout (which may differ on L1 from
that on L2 because of ray splitting), the widths of the fadeout zones, and their
depths. For the example in Fig. 2−15, the difference in onset of the L1 and L2
rays is about 0.1 s or ~200 m. Using these observed quantities and a model, one
can recover, in addition to the altitude of the transition boundary, the change in
electron density at the boundary, its gradients on each side of the boundary
(with an additional global ionosphere model), the mean distance D of the layer
from the LEO, and the separation of the L1 and L2 rays at the boundary.
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Fig. 2-16.  The excess Doppler profile for the same time interval shown in
Fig. 2-15.  Thermal noise sampled at 50 Hz is about 0.7 Hz (1 σ) on the L1 Dop-
pler and 1.0 Hz for L2.  The 5-Hz series are obtained by averaging the 50-Hz
points over 200 ms.  Redrawn from [23,24].
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2.8.1 Fresnel Effects at a Boundary

An example of this approach and a discussion of some Fresnel features are
now given. Let the boundary be located at r ro= . We present here the response
of the ray in terms of the LEO-observed phase and amplitude using a simple
locally spherical symmetric model in which the electron density undergoes a
sharp change at the boundary but is otherwise smooth. For calculating the
change in bending angle due to this roll-off in electron density, the assumption
of local spherical symmetry should be useful because of the abrupt nature of the
roll-off and the narrowness of its extent in the radial direction. (For the
ionosphere at large, the assumption of spherical symmetry has been shown to
be unreliable [19].) We will obtain an estimate of the change in electron density
profile by assuming that over a short altitude range around r ro=  (roughly 1 to
2 km) the variations in bending angle due to the ionosphere at large can be
ignored. We also assume here that the radius of curvature of the ray is very
much larger than the local radius of curvature of the boundary, and that the
latter equals ro  and is radial directed.

The refractivity (×10–6) for carrier phase in the ionosphere is given by the
principal term

N
n

f
e= −κ 2 (2.8-1)

where ne  is the electron density, f is the carrier frequency, and

κ = ⋅ ⋅− −40 3 3 2 1. m s e . A fuller description of ionospheric refractivity, including
the higher-order terms, is given in [4,20,21]. Let ∆ne  be the change in the
electron density in the neighborhood of ro  relative to a reference electron
density profile for the ionosphere at large that is assumed to change more
gradually with radial distance. For one example of a global reference model,
see Appendix E. We assume that the spatial variability of the reference profile
is small compared to the magnitude of the local electron density gradient at the
roll-off. Inasmuch as the entire fadeout zone in Fig. 2−15 spans only about 1/3 s
of time, the boundary width is comparable to or less than the first Fresnel zone
for this example; a Fresnel treatment will be needed to predict the observed
phase and amplitude. Under these conditions, the bending-angle profile
resulting from a discontinuous change in refractivity, as provided by Case A,
should be a useful initial approach. The change ∆α S  below the boundary r ro=
for this case is given by the discrete Snell term from Eq. (2.3−27) by
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where5 v r r r h h ro o o o= −( ) = −( )/ /  and n n N+ −= + ∆ . Here ∆N  is obtained
from Eq. (2.8−1) and it is a negative quantity when ∆ne > 0 ; i.e., when the
electron density increases upward across the boundary. The quantity r̃  marks
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Figures 2−17 through 2-19 show the change in observed phase and
amplitude that result from the diffraction integral in Eq. (2.5−1) using this
Case A model. For the L2 carrier, a discontinuous electron density of
∆ne = +4 48 1010 3. e/ mx  corresponds to ∆NL .2

61 2 10= − × − . The abscissa
r ro − LG  is the difference in altitudes of the boundary and the tangent point of
the straight line between GPS/MET and the occulted GPS satellite; r ro − LG

varies nearly linearly with time. Depending on the averaging time used to
construct the phase measurements (and hence Doppler), Fig. 2−17 shows that
the Fresnel perturbations6 can be a significant error source for sharp transitions
in electron density if unaccounted for in the inversion process that converts
Doppler into an electron density.

                                                            
5 For notational convenience in this section we have dropped the subscript “

*
” from r

*
,

the turning point of the ray, i.e., r r≡
*
. Also, in the ionosphere, we can set

r r h h
o o

− = −  because the nominal defocusing is minimal.

6 The Fresnel perturbation is the difference between the phase profile shown in
Fig. 2−17 minus the profile from geometric optics, which is given by

∆ ∆ ∆= + = +( )1 2
2

/ ( ) ( ), ( )kD r r DS o b Sα ν ε ν ν α ν .



138 Chapter 2

Figure 2−19 shows the Fresnel difference L L1 2− , each carrier measured
in range units (ns) using the Case A model with ∆ne = +4 48 1010 3. e/ mx .
Figures 2−17 through 2−19 span about 3 s of time. For the specific occultation
shown in Figs. 2−15 and 2−16, ˙ 2.3km/ sLGr = − .
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Above the boundary, the L1–L2 profile for the GPS/MET occultation
shown in Fig. 2−15 is sloped downward at an average rate of about –0.28 ns/s
(which reflects the presence of a more global electron density distribution
above the boundary, and which yields average L1 and L2 bending angles of
about +0.05 and +0.08 mrad, respectively). Below the boundary, the average
slope is about −0 85.  ns/s. Thus, the change in average slope as the ray cuts
down across the boundary and into the lower region is about −0 57. ns/ s . For
the small angles involved here, the scale of the observed change in phase delay
is nearly proportional to the change in average slope of L1–L2 in Fig. 2−15.
One can obtain an estimate of ∆ne  by adjusting its value used to generate
Fig. 2−19 to obtain a match in the average slope differences of the L1–L2
profiles across the boundary in Figs. 2−15 and 2−19.

2.8.2 Amplitude Effects at a Boundary

The widths of the fadeout zones in SNRv, shown in Fig. 2−15 for L1 and
L2, provide additional information. Let B  be a measure of the width in
rLG-space across the SNR fadeout zone. A simple measure is the distance
between the boundary and the altitude of the first contact with the caustic, near
which the flaring would be at maximum. Figure 2−18 shows the Fresnel
perturbation in observed signal amplitude using the Case A model with
∆NL .2

61 2 10= − × − . However, we note from this figure that the Fresnel
perturbations on the SNR tend to soften the response of the observed signal to
the discontinuity. This somewhat fills in the trough in the SNR profile and
widens the distance between the point of maximum Fresnel overshoot just
above the boundary and the point of maximum flaring, due to the caustic, just
below the boundary. See Appendix D for a discussion of Fresnel effects on
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location and magnitude of the flaring. For the value of ∆ne  used in Fig. 2−18,
the altitude in rLG-space of the first contact point with the caustic based on
geometric optics is +1.05 km (see Appendix C). The actual maximum in
Fig. 2−18 occurs at about +1.3 km, while the maximum Fresnel overshoot
occurs at –0.7 km. Thus, this particular measure for B (from boundary to
contact) will underestimate the width, more like a half-width. A correction to B
for Fresnel effects can be developed. Asymptotic expressions for the Fresnel
integrals can be used to isolate the point of maximum overshoot, and
Appendix D provides Fresnel corrections to the position of maximum flaring
and its maximum value.

From the thin-screen model using Eqs. (2.2−5) and (2.5−6), and using a
power series expansion of Eq. (2.8−2) and the condition that ∂ ∂h hLG → ∞  at
first caustic contact, one obtains an expression for the “ray” offset

ν† † / /= −( ) =r r r r ro o o o∆ :

v
D N

r
v N

o

†
/

†˙ ,= −




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>>1
2

2
2 3

∆ ∆ (2.8-4)

For B, using the thin-screen model, one obtains

B r r r D r r D N r ro o o o o= − = + ( ) = −( ) =LG
† † † / †˙ /ν α ν∆ ∆3

2
2 32 3 (2.8-5)

Let B BL Land1 2  denote the widths for L1 and L2, respectively. Then it follows
from Eqs. (2.8-1) and (2.8−5) that

B

B

f

f
L

L

L

L

/

˙1

2

2

1

4 3

=




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(2.8-6)

which appears to hold roughly for Fig. 2-15. From Eqs. (2.8-4) and (2.8-5), one
obtains for ∆r  and B  the values ∆r = 350 m  and BL . km1 1 0≈  for

∆NL .1
61 2 10= − × − . For ˙ . km/ sLGh = −2 3 , this yields a temporal width of about

1/3 s, which is about the observed value in Fig. 2-15 for the half-width.
Figure 2-18 also shows a small asymptotic bias in amplitude above unity

for the lower altitude range, which is a lense effect caused by the positive
bending angles below the boundary.

2.8.3 Ray Splitting

The information about the change in slopes of the L1 and L2 carrier phase
profiles and about the fadeout width provides redundant determinations of ∆ne ;
one can use this redundancy to recover an estimate for D . Let p denote a
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parameter such as the RF carrier frequency; in this case p f= –2 . Let ψ r rp , LG( )
be the excess carrier phase observed by the LEO—that is, the difference of the
observed phase minus the predicted phase in the absence of the atmosphere and
ionosphere. Here r Rp E−  is the altitude of the point of tangency with the

Earth’s limb for the ray path corresponding to the parameter value p; similarly,
rLG  is the position of the straight line between the LEO and the observed GPS
satellite at its point of tangency. We use the subscript p  on the ray path
tangency point to denote the dependence of rp  at a fixed epoch (and, therefore,

for a given value of rLG  on the parameter p, that is, r r p rp p= [ ], LG ). If one varies

p while holding the end points fixed and hence rLG  fixed, then rp  also must

vary in such a way that the new ray path satisfies the stationary-phase
condition. The observable α pk

 is given to first order in α pk
 (Appendix A) from

the excess Doppler by

α α λ
π

ψp k p
k

p
k k kp r

r
r r c

r
k= [ ] = − ( ) = −, ˙

˙
˙ ,

˙
˙

LG

LG

LG2
L (2.8-7)

where L k  is the kth carrier phase in time units and c is the velocity of light. We
have written α αp pp r= [ ],  to reflect the direct and indirect dependency of the

bending angle on the parameter p. The quantities ψ̇  and L̇Gr  are known from
the observations, and the POD information is known for the occulted GPS
satellite and for GPS/MET. Therefore, bending-angle profiles, such as those
shown in Fig. 2-14, follow directly from the Doppler measurements and the
POD information. The quantities ˙ Lψ 1 and ˙ Lψ 2 in hertz are shown in Fig. 2-16.

Because of ionosphere-induced ray splitting, the tangent points for the L1
and L2 rays will not quite be the same for a given epoch. For example, there is
~0.1 s difference in the epochs of onset of the L1 and L2 fadeout zones in
Fig. 2-15. This reflects an altitude difference due to ray splitting from the
ionosphere at large that is of the order of 100 m. Figure 2-20 shows the profile
of the ray splitting term D α αL L1 2−( ) using Eq. (2.8-7) for the same

occultation shown in Figs. 2-15 and 2-16. Figure 2-20 shows the profile for a
50-Hz sample rate, and it shows the profile for a 5-Hz sample rate, which is
derived by applying a sliding box filter of 200-ms width to the 50-Hz time
series. The magnitude of the thermal noise reduces as the square root of the
ratio of the sample rates, but the magnitude of the Fresnel fringes, which are
essentially sinusoidal over sampling widths used in Fig. 2-20, reduces linearly.
After contacting this particular ionospheric layer, the ray splitting essentially
triples in magnitude. We should account for this (usually) small difference in
altitude or, equivalently, a bending-angle difference for this example of the
order of a tenth of a milliradian.
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Reference [22] uses a linear combination of bending angles to eliminate
ionosphere effects to second degree in frequency from the observations. We use
a similar approach here to account for ray splitting. To a good approximation,
the total bending can be decomposed into

α α α αp p
A

p
I

pp r r p r= [ ] = ( ) + ( ), , (2.8-8)

where α A  and α I  are, respectively, the atmospheric and ionospheric
components of the bending. However, when the tangent point of the ray lies in
the ionosphere, α A ≡ 0 . Note that α I  depends on p  directly [through the
refractivity given by Eq. (2.8-1)] and also indirectly through rp , which for a

fixed epoch also depends on p. That is,

α I
p pp r pI r, ˙( ) = ( ) (2.8-9)

where I rp( ) is the path integral κ ∇ ×∫ n de s along the ray through the

ionosphere from the LEO to the GPS satellite with an impact parameter value
rp . For example, when the ray path tangency point lies in the ionosphere and if

spherical symmetry were to apply,
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Fig. 2-20.  Ray path splitting of the L1 and L2 signals for
the same occultation and epoch shown in Figs. 2-15
and 2-16.
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Equation (2.8-10) has been simplified somewhat relative to Eq. (2.2-2) by
setting the index of refraction terms in the integral to unity; in the upper
stratosphere and the ionosphere, the differences in these terms from unity is
very small. Also, the third- and fourth-order ionosphere terms have been
ignored (except indirectly through ray splitting).

At a fixed epoch where rLG  is fixed, that is, when the end points of the ray
are fixed, varying p will cause rp  also to vary so as to maintain the stationary-

phase condition on the resulting ray path. Therefore,

d

dp p r

dr

dp
r

p

pα ∂α
∂

∂α
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= + , fixedLG (2.8-11)

But using the thin-screen approximation [Eq. (2.2-5)],
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or
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(2.8-13)

where ζ p  is the defocusing factor
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The differential expression in Eq. (2.8-13) should be valid provided ζ − >1 0,
but its validity will progressively worsen as the ray nears a caustic surface
where ζ − →1 0 . Combining Eqs. (2.8-11) and (2.8-13) yields

d
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p p
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Let r  be the position of the tangent point of the L1 and L2 rays in the
absence of an ionosphere, or, equivalently, when p = 0 . We expand
α α= [ ]p rp,  about this position to obtain
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where r  is given to first order in p by
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Evaluating Eq. (2.8-16) at p1 and p2  and linearly combining to eliminate the
first-order term in p, we obtain
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or, upon using Eq. (2.8-15),
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Figure 2-21 shows this linear combination of bending angles using the excess
L1 and L2 Doppler data from the occultation shown in Fig. 2-16. At these
altitudes (~100 km), α3  should be zero. It is not quite zero because of ray
splitting and the presence of other higher-order effects. Inasmuch as the
magnitude of the bending angle itself from the ionosphere is only 0.1 to
0.2 mrad, the error in the α3  linear combination is as large as the correction
itself, which suggests that an alternative technique for correcting for ray
splitting and higher-order effects might be advisable [19].
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Fig. 2-21.  Ionosphere-free bending angle α3 for the same
occultation and epoch shown in Figs. 2-15, 2-16, and
2-20.
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The ray-splitting term involves the gradient of the square of the ionospheric
bending, which is a consequence of the stationary-phase condition on the ray.
When r  lies above the atmosphere, α[ , ]0 0r ≡ , and for this case we have
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Thus, in the ionosphere the linear combination of the observables α p1
 and α p2

that forms α3  also provides a measure of ray-splitting effects. For the case of
spherical symmetry and where ne  denotes the local transient in electron
density, the integral ′( )I rp  is given by
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which normally is dominated by ′′ne  for r  near rp  when rp  lies in the

ionosphere. Also, from Eq. (2.8-16) we can obtain determinations of I rp( ) and

′( )I rp  from the observables α p1
 and α p2

 when r  lies in the ionosphere. One

obtains
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We note that the ray splitting itself is given by

r r D D p p I rp p p p p r2 1 2 1 2 1− = −( ) = −( )( )α α ζ˙ ( ) (2.8-24)

A suggestion that has been made independently by several investigators is
to offset the epochs of the Doppler measurements to eliminate (to first order)
the ionosphere effects on derived bending angles—in effect, to let the L1 ray
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“catch up” with the L2 ray. Let ∆tp  be the offset of the observational epoch on

the “pkth” carrier for which the change in derived bending angle at that offset
epoch nulls (to first order) the dispersive term in Eq. (2.8-16). That is, we
require that ∆t d dtp p p p

Iα ζ α= − . From Eqs. (2.2-5) and (2.2-6), we have

d

dt
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r
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= ˙ (2.8-25)

and, from Eq. (2.8-16), we obtain by expanding through the first derivative in
time
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from which it follows that to first order
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Forming the “α3” linear combination again, but with an offset epoch applied to
each carrier according to Eq. (2.8-27), one obtains, when D r| |∂α ∂ << 1,
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When D r| |∂α ∂ >> 1, for example, when r  is located low in the troposphere,
then the quadratic error term in Eq. (2.8-28) is more complicated, but it still
will carry the quartic power of the defocusing factors ζ ζp p1 2

and  as the

leading term. This factor will be small, so the error term usually should be
small.

2.8.4 Doppler Information at a Boundary

In the following, the subscript “pk” is replaced by “ L k ”, k = 1 2, . Returning
to the problem of determining ∆ne  across a boundary, two alternate approaches
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can be followed. One is to de-trend the L1 and L2 Doppler profiles using the
POD-provided profile of ρ , where ρ  is the LEO–to–GPS satellite range; the
bending angles αL1  and αL 2  follow directly from the excess Doppler. This is

the approach that was used in [19] to obtain the results shown in Fig. 2-14. The
changes in αL1  and αL 2  across the boundary form an Abel transform with

∆ne  if local spherical symmetry is assumed, which might be a good assumption
given the limited altitude range over which ∆ne  applies ( ∆h =~ km1  in

Fig. 2-15, and an equivalent horizontal span of 2 2001 2∆hro( ) =/ ~ km ).
Applying the Abel transform to these differenced observable streams would
yield ∆ne ; however, if the transient is particularly sharp compared to the size of
the first Fresnel zone, then we would expect imperfect recovery due to the
limitations in geometric optics.

The other approach is simply to use the profile of L1–L2, which does not
require POD information. For this approach, we have

α α αL L L L ˙
L̇ L̇ O

LG

1 1 2 2 1r r
c

r
( ) − ( )[ ] = − −[ ] [ ]2 + 2 (2.8-29)

When spherical symmetry applies, ∆ α αL L( ) ( )1 2r r−[ ] and ∆ N r N rL L( ) ( )1 2−[ ]
form an Abel transform pair. However, the quantity [L1–L2] in Fig. 2-15 is
formed from the measured phases of the two carriers at a common epoch and is
so formed to eliminate the geometric range term between the LEO and the
occulted GPS satellite. As Eq. (2.8-29) shows, [L1–L2] is affected by ray
splitting, and it should be corrected if r rL L1 2−[ ] significantly differs from zero.
Following the earlier discussion and using Eq. (2.8-16), one obtains for the
change in the [L1–L2] profile in the neighborhood of the boundary
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If ζ p DpI− = −1 1 '  is near unity, one obtains ∆I r( )  directly from Eq. (2.8-30);

otherwise, Eq. (2.8-30) can be evaluated by iteration, first obtaining the profile
for α αL L L L1 1 2 2r r( ) − ( )[ ] from Eq. (2.8-29) and then using this profile over

time to obtain an estimate of I. Alternatively, one can obtain an estimate of
r rL L1 2−  from the difference in epochs of fadeout onset; use of Eq. (2.8-24)
and an assumed value for D yields an estimate of I.
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Finally, correcting Eq. (2.8-29) for ray splitting and applying an Abel
transform (when spherical symmetry holds) to Eq. (2.8-30) yields ∆ne  in the
vicinity of ro :
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With the value for ∆ne  obtained from Eq. (2.8-31) and using the L1–L2 profile,
one obtains D from Eq. (2.8-5), which is
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The value for D so obtained is around 2800 km for the occultation in Fig. 2-15.

2.8.5 Fresnel Effects Using an Improved Electron Density Model

One can improve on the Case A model somewhat. Comparing Figs. 2-15
and 2-18, one notes that a simple model given by a discontinuous electron
density at a boundary is not sufficient to explain all of the features in Fig. 2-15
in the vicinity of ro . Prior to onset of the fadeout zone, Fig. 2-15 shows an
SNRv flaring relative to the base SNRv that is approximately 33 percent in L1
and nearly 50 percent in L2, which are far in excess of the Fresnel overshoot
shown in Fig. 2-18. This suggests that another caustic geometry applies just
above the boundary, in addition to the caustic below. In this case, it follows
that, in addition to the large positive gradient in electron density just below the
boundary, the gradient must become negative just above the boundary (to
obtain a positive gradient in refractivity in this region and, therefore, a negative
increment in bending angle). Moreover, the dip in the excess Doppler profiles
shown in Fig. 2-16 just prior to onset of the fadeout followed by an abrupt rise
just afterwards also suggests a sharp negative gradient in electron density above
the boundary and a positive gradient below. Apparently, the electrodynamic
and electrochemical environment in this region can result in a concentration of
free electrons confined to a narrow range of altitudes at roughly 100 km just
above the recombination zone. This is depicted in Fig. 2-22. A sporadic E-layer
roughly fits this description.

We use a simpler model that will generate caustics above and below the
boundary as well as the sharp negative and positive changes in excess Doppler.
It is given by
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Following the same methodology as given for Case A (with α + = 0), three
regimes will apply: the region above the boundary, the narrow region between
the critical refraction altitude up to the boundary, and the region below the
critical refraction altitude. One obtains for ∆α( )r  in the two regimes
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where ∆αS  is the discrete Snell bending-angle term given in Eq. (2.8-2),

∆ ∆N n r fo e o= − ( )κ / 2 , F[ ]σ  is defined by Eq. (2.3-28), σ β= −( )r ro , and

r̃ N ro o= +( )1 ∆ , which denotes the critical refraction point for ∆n re o( ) > 0 . The

corresponding refractivity and bending-angle profiles are shown in Figs. 2-23
and 2-24. This would produce a dip in excess Doppler prior to onset of fadeout
and an abrupt rise just after onset, such as shown in Fig. 2-16.

The free parameters in this model are ∆No , γ , and β , and we can adjust
them using the relationships developed in this section to best fit the observed
profiles in Figs. 2-15 and 2-16. Using the stationary-phase condition for the
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Fig. 2-22.  Trial electron density profile near the boundary, r = ro.
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thin-screen model, one integrates Eq. (2.8-34) to obtain the phase delay ε( )h ,
which is to be embedded in the thin screen. It is given by
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where ∆αS  and εS  are the Snell terms given by Eqs. (2.8-2) and (2.8-3),
respectively, and h r R= − . From the Rayleigh–Sommerfeld integration in
Eq. (2.5-1), one obtains the observed Fresnel response to this kind of electron
density distribution.

Figure 2-25 shows the Fresnel perturbations in observed signal amplitude
in the vicinity of ro  for ∆No = − × −1 2 10 6. , γ = 10, and β = −5 1km . The
similarity of Fig. 2-25 in the fadeout zone, including the neighboring crests due
to flaring, to those in Fig. 2-15 should be noted. Figure 2-26 shows the excess
Doppler, including the Fresnel perturbations that result from the assumed
electron density model given in Eq. (2.8-33). The black curve is a smoothed
version obtained by applying a 1/4-s-wide box filter to the 40-Hz samples. The
qualitative agreement between Figs. 2-16 and 2-26 should be noted in the
vicinity of r roLG = . The abscissa range shown in Figs. 2-25 and 2-26 is
equivalent to about 3 s of observations.

Fresnel expressions for estimating minimum signal amplitude in a trough or
maximum signal amplitude at the crest of a flaring region, and for calculating
the positions of these features in hLG -space, will be found in Appendix D.
However, from geometric optics we can estimate the altitude of the flaring
using the condition that dr drLG / = 0  at the first contact point with a caustic.
Using the thin-screen relationship in Eqs. (2.2-5) and (2.8-34) for ∆α , one
obtains for the position rLG

†  of the first contact point at the upper caustic
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Fig. 2-25.  Fresnel perturbation in signal ampli-
tude using the thin-screen phase profile from
Eq. (2.8-35).  This figure should be compared
with Fig. 2-15.
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which predicts the contact point (where flaring should be near maximum) at
r ro − = −LG

† . km0 6 , or about 0.2 s prior to the time of impact of the ray with the
boundary. The exact location of the point of maximum amplitude in Fig. 2-25,
which can be accurately predicted using the third-order theory in Appendix D,
is r ro − = −LG

† . km0 84 .
Finally, we can apply the Abel transform to the L1 Doppler series shown in

Fig. 2-26, which is based on the thin-screen model using the refractivity model
given in Eq. (2.8-33) and shown in Fig. 2-23. This will give us one qualitative
estimate of the fidelity of the Abel transform for two transient situations: for
r roLG >  the transition scale in refractivity is comparable to the scale of the first
Fresnel zone, but at r roLG =  there is a sharp transition, a discontinuity

∆No = − × −1 2 10 6. , in this case. The recovery of the refractivity profile based
on the Abel transform and the original model are shown in Fig. 2-27, as too is
the truth model N r( )  given by Eq. (2.8-33). Here N N( ) / ( )−∞ = +∆ o 1 γ . Even
the smoothed profile (at 4 Hz) shows a bias as a result of the sharp transition in
true refractivity at the boundary.

2.9 The Error in the Recovered Refractivity Resulting
from Fresnel Phase Perturbations

Since the Abel transform is a linear operator, we can use it, if spherical
symmetry applies, to assess the error in the recovered refractivity that results
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Fig. 2-26.  Residual excess L1 Doppler including Fresnel perturba-
tions for the electron density model given in Eq. (2.8-33).  This figure
should be compared with Fig. 2-16.
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from using a geometric optics approach when Fresnel phase perturbations are
present (see Appendix F). Let δN̂  (×10–6) be the error in recovered refractivity,
which is obtained from the Abel transform by the expression

δ
π

δα µ
µ

µˆ ( )
( )

N a
a

d
a

=
−

∞

∫1
2 2

(2.9-1)

where a is the impact parameter for the ray path. For error assessment purposes,
it can be taken as R hE o+ , the altitude in the thin screen corresponding to the
real altitude of the tangency point of the ray to the Earth's limb, plus the Earth’s
radius RE . Now the error in the inferred bending angle is given to a good
approximation by

δα λ
π

δϕ λ
π

δϕ= =
2 2

˙
˙ ˙

( )

LG LGh

d

dh
(2.9-2)

where δϕ  is the phase perturbation caused by some error source. Let δϕF hLG( )
be the phase perturbation due to Fresnel effects, such as that shown in
Fig. 2-10. Then Eq. (2.9-1) becomes
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Fig. 2-27.  Recovered refractivity profile N(r ) obtained from
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where the dummy variable µ  is given by µ = +R hE '  and r  is given by
r R hE= + . To avoid differentiating δϕF bh( ), Eq. (2.9-3) may be written in an

alternate form:
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(2.9-4)

where ζ  is the defocusing factor, ζ = dh dh/ LG .
For an atmosphere in local thermodynamic equilibrium and of known

constituents, the consequent error in the retrieved temperature profile due to
unmodeled Fresnel perturbations follows from the relation

δ δ δT
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N

N

Ndh

Ndhh h

h

h

= − +

∞

∞
∫
∫

(2.9-5)

When the spectrum of δN h( )  has most of its power at short wavelengths (i.e.,
<1 km), which is the case for Fresnel-induced variations, then the first term on
the RHS of Eq. (2.9-5) will be dominant. In any case, the second term is given
by
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Figures 2-28(a) through 2-28(d) provide an evaluation of the Fresnel effects
on the recovery of N h( )  and T h( )  for the Case C example given in
Fig. 2-10(b), with a lapse rate discontinuity of 14 K/km. Here, as in
Fig. 2-10(b), the geometric optics component due to the lapse rate discontinuity
has been suppressed because the Abel transform would recover this component.
A lapse rate discontinuity of 14 K/km results in an error of a few tenths of a
kelvin in retrieved temperature in the vicinity of the discontinuity. As expected,
the maximum error occurs near first contact with the caustic, which for the
+ ray (in Figs. 2-28(c) and 2-28(d) the abscissa is the turning point altitude h+

of the + ray) is located at h ho
+ − = +( ) . km2 0 16 , that is, it is above  the

discontinuity. The – rays are located at h ha b
o

, ( ) . km2 0 16− = − . This example
clearly shows that even though the altitude differences of the turning points of
these multipath rays are well within the first Fresnel zone, a Fresnel diffraction
treatment is required to properly account for the effects of the caustic. On the
other hand, SNR limitations, at least on GPS/MET, constrain the utility of high-
resolution Doppler sampling. A typical averaging interval used by investigators
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in analyzing GPS/MET data has been about 1/3 s, or about 1 km in hLG , which
largely washes out Fresnel effects [see Figs. 2-28(c) and 2-28(d)].

2.10  Fresnel Transform Techniques

Because of their highly localized character, transients such as those
observed across a sporadic E-layer would appear to be good candidates for
treating by inverse diffraction techniques to secure sub-Fresnel vertical
resolutions. Limitations in resolution using inverse diffraction techniques can
arise from along-track inhomogeneity, from an uncertainty in the cross-track
gradient of the TEC (total along-track electron content per unit columnar area,
1 TEC = 1016 electrons/m2) between the LEO and the layer, and also from the
uncertainty in the effective or mean along-track distance of the layer from the
LEO. Any model error that causes a loss of coherence as the integration limits
are broadened between the integrands ( E h i hLG LGexp( ) ( )[ ]Ψ  in the diffraction

integral [Eq. (2.5-1)] and A h i h h( )exp , LGΦ( )[ ]) in its Fresnel transform will

degrade the resolution.
For a spherical shell with a 1-km vertical thickness, the along-track extent

of the layer would be roughly 200 km. It can be shown [4,5] that δh , the
vertical resolution limit due to an error δD in the assumed along-track distance,
is given by

δ λ δ
h

D D

D
≥ 1 25

2
. (2.10-1)

Thus, an uncertainty of 5 percent in the along-track distance (about 150 km)
translates into a lower resolution limit of about 20 percent of the radius of the
first Fresnel zone; the limit scales as the square root of the error in the
knowledge of the distance D of the layer.

Uncertainty in the cross-track gradient in TEC between the LEO and the
layer averaged over the vertical extent associated with the diffraction
integration interval (a few kilometers) is another problem. Although a time
sequence of dual-band phase measurements allows a determination of the
overall (LEO-to-GPS) cross-track gradient in TEC, the component of cross-
track TEC gradient arising from the electron density spatial variability between
the LEO and the boundary layer is partially unknown. This component can
“leak into” the diffraction and thereby corrupt the resolution because of the
13 percent difference in Fresnel zone radii between the L1 and L2 carriers. It
can be shown [4] that an error in the knowledge of this cross-track gradient
degrades the resolution by
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It follows that a near-field error of 0.1 TEC/km maps into a vertical resolution
lower limit of about 30 percent of the radius of the first Fresnel zone; note that
this limit scales linearly with the error in the near-field component of cross-
track TEC gradient.

With these caveats in mind7 (and others; see, for example, [5]), we briefly
discuss enhanced resolution using the Fresnel transform. The phase
perturbation in the thin screen due to δα  theoretically can be recovered with
enhanced resolution from the observed phase and amplitude variations by using
Fresnel transform techniques. We may generalize Eq. (2.5-1) to the form
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(2.10-3)

Here u  is the thin-screen altitude h expressed in Fresnel units, and similarly for
uLG , ϕ( )u  is the thin-screen phase profile, and A u( ) is the normalized
amplitude of the radiation emitted by the thin screen ( A u( ) would be unity
throughout the screen when no attenuation exists). Then A u i u( )exp[ ( )]ϕ  and
E u i uLG LGexp( ) ( )[ ]ψ  form a Fresnel transform pair. Multiplying the integral in

Eq. (2.10-3) by exp LG− −( )[ ]i v u 2 , integrating on uLG , and using the Dirac delta

function (see Appendix A) yields

  A u i u
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The perturbation in atmospheric refractivity would be obtained from
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(2.10-5)

                                                            
7 The effect of along-track inhomogeneities on resolution can be assessed using the
multiple-screen approach [10,11] combined with a two-dimensional random walk
model to account for variations in refractivity in the along-track and radial directions.
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where ξ = +h RE , h a RE= −secα . Here ε( )h  is the perturbation in the thin-
screen phase profile obtained by subtracting the reference profile ϕRef ( )h  from
the profile ˆ( )ϕ h  recovered from the inverse Fresnel transform in Eq. (2.10-4).

Strategies for using Fresnel transform techniques as outlined by
Eqs. (2.10-4) and (2.10-5) to achieve resolutions past the Fresnel limit are
discussed in [4,5]. Sub-Fresnel-zone resolution can be obtained in certain
physical situations. This was clearly demonstrated by [5] in recovering certain
physical parameters of Saturn’s rings from radio occultation observations. The
extent to which these techniques are applicable to the Earth’s atmosphere and
ionosphere will depend in part on how laminar the atmosphere is and how
benign the ionosphere is.

2.10.1 Adjoining the Constraint A(u) ≡ 1

One could strengthen the recovery of the thin-screen phase profile by
adjoining a constraining condition to Eq. (2.10-3) requiring that A u( ) ≡ 1 and
applying some least-squares criterion to the resulting linear operators. One of
the shortcomings of the formal application of the inverse Fresnel transform in
Eq. (2.10-4) is that this approach does not take into account the presence of
errors in the phase and amplitude observations and one is free to adjust the
recovered values of A u( ) accordingly without a priori information about A u( )
being imposed.

A straightforward alternative approach is to linearize the forward Fresnel
transform in Eq. (2.10-3) in terms of the variables ϕ, E, and ψ  by varying them
about their nominal values and then to convert the resulting variational
equations, both the in-phase and quadrature components, into a discrete, over-
determined, linear least-squares estimation system. The state vector is the thin-
screen phase sequence δϕ ε{ } = { }. These vector elements are to be adjusted and
iterated according to some least-squares criterion that minimizes the weighted
root-mean-square (rms) of the “O−C” vector residuals δE{ }  and δψ{ }. It can
be shown with A u( ) ≡ 1 that the linearized version of Eq. (2.10-3) is given by

δ
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(2.10-6)

Converting the integrals in Eq. (2.10-6) into discrete forms to handle
discrete sampling should be done with caution because it can introduce subtle
effects related to aliasing, sampling bandwidth versus the spectral breadth of
the phase and amplitude observations, and SNR levels.
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2.10.2 Diffraction Integral with Multipath

One can generalize Eqs. (2.10-4) and (2.10-5) further to account for
multipath, following the lines suggested in Chapter 3, footnote 2. Suppose the
LEO GPS receiver has successfully “tracked” the amplitude and phase profiles
of the individual tones, or has at least operated in an open-loop mode so as to
enable this recovery using Fourier transform techniques. Let E uj( )

LG( ) and

ψ ( )
LG

j u( ) be the amplitude and phase of the j th  tone “tracked” by the
receiver on the LEO. Then the stationary-phase condition must apply to each
tone, and it follows that
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In this case, A j( )  would not be unity because the incident signal power would
have to be shared among the tones so that A j( )∑ = 1. If geometric optics is

applicable, the local defocusing factor for each tone could be used to obtain an
a priori estimate of the relative values of A j( ) . The Fresnel transform of
Eq. (2.10-7) is given by
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(2.10-8)

2.10.3 A Numerical Example

With the 50-Hz L1 SNRV  and phase data from the occultation profile
shown in Figs. 2-15 and 2-16 as input into Eq. (2.10-4), one can generate
estimates of ε( )u  for the layer. We assume that over the few seconds of interest
here the phase contribution from the ionosphere at large is essentially constant.
One can improve on this procedure by modeling the contribution from the
ionosphere at large over this short time interval; for example, it is easily shown
that adding a constant Doppler term ∆fd  to the excess Doppler series in
Fig. 2-16 (to null its mean value) results in an offset in the recovered profile of
ε( )u  [from Eq. (2.10-4)] in h -space that is equal to D I∆α , or about 100 m;
∆α I  is the bending-angle increment resulting from the Doppler offset ∆fd .

More specifically, we perturb the observed phase: ψ ψ π→ +T
df t2 ∆ , where t is

a linear function of hLG  and t = 0  when hLG = 0 . Let ˜ ( )Exp[ ˜ ( )]A u i uϕ  be the
recovered thin-screen amplitude and phase including the effect of this linear
perturbation in observed phase. Then from Eq. (2.10-4) it can be shown that
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Thus, the recovered profiles of ˜ ( )A u  and ˜ ( )ϕ u  are offset8 in the thin screen by
∆u . We neglect this offset ∆u  here because we are interested in the resolution
potential of Eq. (2.10-4).

We renormalize the excess L1 Doppler series shown in Fig. 2-16 so that its
average value for the first 5 seconds in this figure is zero. Then we integrate
this Doppler series with time to obtain a renormalized L1 phase profile (see
Fig. 2-29), which along with the normalized SNRV series (its average value
over the first 5 seconds is set to unity) are used in Eq. (2.10-4) to obtain the
profiles for the thin-screen amplitude and phase in the vicinity of the transient,
which from Fig. 2-16 is located around t = 5 7. s .

As discussed earlier, the integration limits in Eq. (2.10-4) affect the
resolution that can be achieved when modeling errors are present. Thus, the
optimal integration limit in Eq. (2.10-4) involves a trade-off between accuracy
and resolution. For an uncertainty in D of 5 percent, the single-sided
integration limit giving the best resolution is about 3 to 4 Fresnel radii, or about
1 to 2 s of elapsed time; the best resolution itself would be given by
Eq. (2.10-1), and would be about 20 percent of a Fresnel radius in this case.

                                                            
8 In Fresnel transform theory, the pair ( ),u u

LG
 form a conjugate variable set that is

analogous to that formed by spectral number and coordinate position, or by frequency
and time in Fourier transform theory, or, equivalently, by position and momentum, or
by energy and time in quantum mechanics. The reader can verify that there is an
analogous “Heisenberg uncertainty” principle that holds between ∆u

LG
 and ∆u . In

diffraction integral processes, this translates into the following proposition. Suppose
that a transient occurs in the thin-screen phase profile of characteristic width ∆u  (for
example, a Gaussian-shaped transient with a 1-σ half-width of ∆u). This transient
causes a corresponding transient in the observations of characteristic width

∆ ∆u Tr D
LG LG

= ˙ ( / ) /2 1 2λ  (the envelope of which for this example also would be a

Gaussian with a 1-σ half-width of ∆u
LG

). Then the uncertainty principle states that the

product ∆ ∆u u⋅ ≥
LG

1/ π . This inequality is of course a hallmark of classical

diffraction: the narrower the aperture through which waves must pass, the broader their
overall pattern at reception.
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2.10.4 Fresnel Aliasing

The finite temporal sample width (20 ms) of the L1 Doppler series shown
in Fig. 2-16 can result in a kind of “Fresnel aliasing” in the convolution; so, one
must use integration limits that are well below a certain threshold at which the
effects of this aliasing become prominent. Let k be an integer that denotes the
position in hLG -space of the LEO–GPS line at the kth observation epoch, and
similarly, let j denote a thin-screen position in h-space. When h hLG = , k j= ;
thus, h r T k cLG LG

˙= ( ) +∆  and h r T j c= ( ) +L̇G∆ , where c  is a constant (we have

assumed here that the defocusing is negligible). Here ∆T  is the temporal
sample interval, 20 ms. In this case, the aliasing threshold for the Fresnel phase
in Eq. (2.10-4) is given by the discrete form of the stationary-phase condition

ψ ψ π( ) ( ) ( ) ( )k B j k k B j k n+ − − − − + − = ±1 1 22 2 (2.10-10)

where n is an integer and where

B
r T

D
= ( )π

λ
L̇G∆ 2

(2.10-11)

The principal contributions to the continuous version of the inverse diffraction
integral in Eq. (2.10-4) come from the neighborhood(s) around the point(s)
where k to the nearest integer satisfies the condition given in Eq. (2.10-10) with
n = 0 . However, in the discrete version of Eq. (2.10-4), pseudo-stationary-

phase contributions also arise with n = ± ±1 2,  ,  L. Let M k j* *= −  be the
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Fig. 2-29.  Renormalized L1 SNR and excess phase for
the same occultation and epoch shown in Figs. 2-15
and 2-16.
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aliasing threshold, which must significantly exceed the single-sided range of
k values about a given value of j that can be used in the deconvolution to avoid
Fresnel aliasing effects. Expanding Eq. (2.10-10) yields

M
D

r T
f T n

b
d

*

˙
/=

( )
±( ) −λ

∆
∆2 1 2 (2.10-12)

where fd  is the excess Doppler in hertz. For n = 1, M*  is about 240 for this
occultation, which exceeds the integration limit for optimal resolution when
δD D/ . %≥ 0 3  and when the uncertainty in the near-field cross-track gradient in
TEC is greater than ~0. 1 TEC/km.

2.10.5 Numerical Results

The results of this inverse diffraction integral are shown in Figs. 2-29 and
2-30(a) through 2-30(c). Figure 2-30 shows the renormalized excess L1 phase
and SNR for the occultation shown in Figs. 2-15 and 2-16. Figure 2-30(a)
shows the recovered thin-screen amplitude and phase using Eq. (2.10-4)
without applying the a priori constraint A u( ) ≡ 1. Figure 2-30(b) shows the
gradient of the recovered thin-screen phase delay, which is proportional to
bending angle. Note the change in time scale in Figs. 2-30(a) through 2-30(c)
versus Fig. 2-29. Although the recovered profile for the thin-screen amplitude
is roughly unity over most of its time series, it deviates significantly from unity
at the transient; it is in this neighborhood where adjoining the a priori constraint
might strengthen the recovery of the thin-screen phase profile. On the other
hand, it is well known from the mathematical concept of observability in
estimation theory that in the presence of mismodeled effects or certain other
error sources, one might obtain better least-squares determinations of the
parameters of interest by allowing certain other parameters (not well-observed
in the first place) a wider latitude in the least-squares process to absorb the
effects of such error sources. A good strategy here is not clear without first
investigating the spectral nature of the error sources and constructing the
sensitivity matrix of the estimated parameter set.

To obtain the electron density profile across the transient, we relate the
phase profile in the thin-screen model to the change in refractivity across a thin,
spherical ionospheric shell. In thin-screen methodology involving a single
screen, the actual along-track phase accumulation through the shell is replaced
with a thin-screen phase that is given by the stationary-phase condition through
Eq. (2.6-5), which relates the thin-screen phase profile to the refractive
bending-angle profile based on geometric optics. For the very small bending
angles involved here and assuming local spherical symmetry, we can use the
approximate relationship for the thin-screen phase perturbation:
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As Fig. 2-31 shows, even a delta-function-like impulse in refractivity across a
thin ionospheric shell results in a lingering effect in the thin-screen phase
profile because the rays continue to traverse the shell twice at lower depths.
Upon differentiating ε  with respect to r  and using the Abel transform (and
setting ∆N( )∞ = 0 ), it follows that

∆N r
k

d

d

d

ro
r

( ) =̇ −
−

∞

∫1
2 2π

ε
ξ

ξ
ξ

(2.10-14)

which is essentially the same form as given by Eq. (2.9-3). The result of this
integration is shown by the curve labeled “Fresnel” in Fig. 2-30(c). The half-
width of the bulge in electron density is about 300 m. The curve labeled
“Geometric Optics” is the geometric optics version, that is, the profile obtained
from applying the Abel transform directly to the L1 Doppler series in Fig. 2-16,
renormalized so that the average excess Doppler over the first 5 seconds is zero.
As has already been suggested by Fig. 2-27, the geometric optics version
“tracks” the medium-to-long wavelength variability (compared to the Fresnel
scale) in refractivity fairly well. But just prior to and just after encountering the
sharp transition in refractivity at t = 5 6. s in Fig. 2-30(c), the fidelity of this
algorithm appears to degrade significantly.

We also can compare the constrained and unconstrained versions of the
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Fig. 2-31.  The relationship between refractivity and the thin-screen phase
for a spherical shell.
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Fresnel recovery of the electron density profile around the transient. Following
the discussion around Eq. (2.10-6) in which the constraint A u( ) ≡ 1 is formally
imposed on the linearized version of the forward Fresnel transform, we first
convert it into a discrete form and then invert it using a least-squares algorithm.
In this case, one obtains a formal solution for the least-squares estimate of the
offsets in the thin-screen phase relative to the nominal profile, which is given
by

δε̂ = ⋅Γ L (2.10-15)

where δε̂  is the m ×1 matrix giving the least-squares estimate of the thin-
screen phase offset with m ≤ NMAX/ 2 . Γ  is the m m×  covariance matrix, and
L  is the m ×1 information matrix, which for the simple discrete version used
here and assuming a stationary white noise process for the observation set
(stationarity manifestly does not hold near the transient!), is given by
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Here NMAX is the number of discrete pairs of amplitude and phase
observations selected for the inversion process and NMAX should be at least as
great as the Nyquist limit for the selected number of thin-screen points m (but
significantly less than the Fresnel aliasing limit 2M* ). For large NMAX and
for a stationary white noise process, ΓΓ−−1 asymptotically approaches the
particularly simple form
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which is nearly diagonal when 1 << NMAX *< 2M . A simple trapezoidal rule
has been used to convert the continuous forms to discrete forms used in
Eqs. (2.10-16) and (2.10-17). This should suffice provided the spatial sampling
interval is small (it is about 1/11 of a Fresnel scale for this occultation) and
provided the sampled observation vectors are low-pass filtered to eliminate the
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possibility of certain high-frequency components in their continuous power
spectrum leaking in through aliasing. These discrete linearized systems can be
applied iteratively using any one of a variety of estimation algorithms (e.g.,
Householder orthogonal transformation, singular-value decomposition, square-
root information filter) until convergence is obtained.

When the converged profile for the thin-screen phase is passed through
Eq. (2.10-14), one recovers the refractivity with the a priori constraint A u( ) ≡ 1
imposed. A comparison of electron density profiles [using Eq. (2.8-1)] with and
without this constraint is shown in Fig. 2-32. Steeper gradients in electron
density near the transient and a higher peak are significant features of the
constrained case. These result in greater defocusing in the constrained case than
in the unconstrained case to achieve the observed SNR fadeout and recovery
instead of allowing A u( ) also to vary to achieve the same effect.

The question of the fidelity of the different Fresnel versions presented here
for recovering electron density is moot without first performing a number of
simulations with realistic error sources including along-track inhomogeneity
and sampling effects. Chapters 3 and 5 of this monograph deal indirectly with
the question of the fidelity of the thin-screen model by studying scattering
effects based on Maxwell’s equations applied to a spherical surface. Fresnel
transform theory and the thin-screen model appear to work well in thin
atmosphere conditions, which makes certain narrow features observed in the
ionosphere good candidates for this approach. Also, tropopause features should
be well modeled. But lower troposphere features often violate the thin
atmosphere condition for the thin screen, 1 0+ >a d daα α( / )  or

β π< ≈−( ) ./2 0 41 2 , and they even exceed the super-refractivity threshold β = 1
on occasion. The impact parameter space curve provides a better platform for
these lower troposphere features, working exceptionally well except for super-
refractive layers.
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Fig. 2-32.  Fresnel recovery of the transient in electron
density distribution for the occultation shown in
Fig. 2-15 around t = 5.6 s, with and without adjoining the
a priori constraint A(u ) ≡ 1.
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For observation epochs greater than t = 6 5. s  shown in Fig. 2-32, the
recovered profile for ∆ne  gradually levels off as the tangency point of the ray
descends into the upper mesosphere and into a more neutral medium. This
regime where ∆ne  levels off could provide a zero point from which the
absolute value of the electron density near the transient can be estimated.
However, variability from the ionosphere at large may corrupt this estimate.
Figure 2-14 provides one example of the trend in bending angles for the upper
mesosphere.
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